
PoolQ
PoolQ is a counter for indexed samples from next-gen sequencing of pooled DNA.

This documentation covers PoolQ version 3.0.5 (last updated 11/05/2019).

Background
The Broad Institute Genetic Perturbation Platform (GPP) uses Illumina se-
quencing to tally the results of pooled screens. PoolQ can process pooled
screens representing a variety of genetic perturbation techniques, including
CRISPR/Cas9, RNAi, and barcoded ORFs. We perform the following steps to
generate one or more files of sequencing reads (or “reads files”) for the pooled
screen:

1. We start with multiple genomic DNA samples; generally it is assumed
that the samples share a common pool of constructs but vary by some
experimental condition.

2. We apply PCR to the genomic DNA samples using primers that amplify
the the barcode region of each construct in the pool and attach a fixed-
length barcode uniquely identifying the DNA sample. In this way, all the
amplification products will contain the inserted sample barcode.

3. We pool all the samples, normalized to equalize barcode representation,
and run them in a single sequencing lane.

4. The sequencing process generates an output file for each sequencing lane.

PoolQ comes into play after the sequencing files have been generated. A single
PoolQ invocation processes one sequencing run. It attempts to parse out the
unique barcodes representing the sample and construct from each read. It maps
sample barcodes to conditions and construct barcodes to construct IDs, and
generates a matrix with the conditions as columns and the constructs as rows.

Changes in PoolQ 3.0
PoolQ was completely rewritten for version 3.0. The new code is faster and the
codebase is much cleaner and more maintainable. We have taken the opportunity
to make other changes to PoolQ as well.

• There are substantial changes to the command-line interface for the pro-
gram.

• The default scores file format has changed slightly, although there is a
command-line argument that indicates that PoolQ 3.0 should write a
backwards-compatible scores file. The differences are in headers only; file
parsers should be able to adapt easily.

• The quality file has changed somewhat. Importantly, the definition of
certain statistics has changed slightly, so quality metrics cannot be directly
compared between the the new and old versions. In addition, we no longer
provide normalized match counts.

1



Command-line interface changes

The PoolQ command-line interface has been reworked significantly in PoolQ
3.0. There is no current migration guide between the two interfaces; however
virtually every possible configuration of PoolQ 2.0 is also possible with PoolQ
3.0. To update your command-line arguments, consult the commands specified
in the test data Makefile for each scenario. Furthermore, there are extensive
explanations of the various parameters in subsequent sections of this document.

Scores file changes

One of the key internal changes to PoolQ 3.0 was to avoid using the terms
“construct barcode” and “sample” barcode prescriptively. PoolQ 3.0 favors the
terms row barcode and column barcode, since the actual concepts these barcodes
represent should be of limited concern to PoolQ. As such, the default scores file
format changes its terminology slightly. Where the PoolQ 2.X scores file header
read:

ConstructBarcode Construct IDs

the PoolQ 3.0 scores file header reads:

Row Barcode Row Barcode IDs

Note that the structure of the files have not changed, so any parser which ignores
these columns in the header need not make any changes. Parsers that use these
columns should be able to adapt trivially to the new terminology. Moreover,
PoolQ 3.0 supports a command line option --compat which specifies that the
scores file contain the former terminology.

Quality file changes

• Changed the “Total Reads” metric to report the total number of reads
in the file i.e., do not discard reads with Ns in the sample (conditions)
barcode region. These values will be higher in PoolQ 3 than they would
have been previously for the same input data.

• Changed the “Matching Reads” metric to include only reads that matched
both a known row and column barcode; formerly this number included all
reads that matched a row barcode even if they did not match a column
barcode. These values will be lower in PoolQ 3 than they would have been
previously for the same input data.

• Changed the “1-base mismatch reads” metric to report the number of
one-base mismatches used to match a row barcode only if the column
barcode also matched; as above, this formerly included reads that matched
a row barcode even if the column barcode did not match. These values will
be lower in PoolQ 3 than they would have been previously for the same
input data.

• Changed the “Overall % Match: (Construct+Sample Barcode)/total reads”
heading to simply “Overall % match”, and report the % as the number

2



of reads matching both a row and column barcode divided by the total
number of reads in the file (i.e., do not exclude reads with Ns in the sample
barcode region from the denominator). These values will be lower in PoolQ
3 than they would have been previously for the same input data.

• Removed the metric “Avg. counts for unknown sample barcodes”
• Removed the metric “Normalized avg. counts for unknown sample bar-

codes”
• Changed the “Read counts for sample barcodes without associated con-

ditions” metric to be specific to cases where a row barcode matched but
a column barcode did not; report only the top 100 unexpected sample
barcodes.

• Removed the “Construct barcodes matching multiple construct IDs” section

PoolQ Use Cases
The most common usages of PoolQ falls into one of six basic scenarios, defined by
the number of sequencing files it needs to read and the way it will locate barcodes
within those files. PoolQ can process sequencing results with reads wholly
contained within one sequencing file, or with each read partially represented
within two sequencing files. It can locate barcodes that occur at a constant
offset within the reads or that occur at a variable offset within the reads. For
barcodes whose position varies within the reads, PoolQ has two approaches for
identifying the barcode region: first, by locating a fixed DNA sequence known
to immediately precede the construct barcode; and second, by tiling a template
sequence along the read until a sequence of DNA matches the template.

We describe the combination of these two dimensions in the following way:

• Scenario 1: Fixed offset, one sequencing file
• Scenario 2: Variable offset, one sequencing file
• Scenario 3: Fixed offset, two sequencing files
• Scenario 4: Variable offset, two sequencing files
• Scenario 5: Template match, one sequencing file
• Scenario 6: Template matching, two sequencing files

These scenarios require different command-line options. The PoolQ distribution
contains sample data representing each scenario and presents example command
lines for processing each case.

PoolQ Inputs
PoolQ requires 3 input files to run: the (FASTQ or SAM/BAM) file containing
the reads (the reads file); a file mapping barcodes to conditions (the conditions
file); and a file mapping construct barcode sequences to construct IDs (the
reference file). PoolQ can also take an optional input file (the platform reference
file) describing known barcodes that are not expected to be present in the
sequencing reads. There are also a variety of optional settings that specify how

3



PoolQ processes the reads.

Reads File(s)

The reads file is a either a standard FASTQ file or a SAM/BAM file, containing
the reads. It may or may not be compressed with gzip. If the file is a FASTQ
file, then the file extension should be .fastq or .txt (case-insensitive). If it
is a BAM file, then the file extension should be .bam, and for a SAM file, the
extension should be .sam (case-insensitive). Files that do not follow these naming
conventions can still be used, but you must specify the file type explicitly.

If the file is compressed with gzip, then the file must have an extra .gz extension
after the .fastq, .txt, or .bam extension.

A barcode representing a sample and a construct are parsed out of each read.
The length of the sample barcode is inferred from the contents of the conditions
file. The length of the construct barcode is inferred from the contents of the
reference file. By default, the sample barcode starts at the first base of the read,
and the construct barcode starts at the 17th base of the read, but both of these
defaults can be overridden with an optional flag.

In some cases, reads are divided into two separate FASTQ files (BAM/SAM is
not supported in this case). One file contains the sample barcodes, while the
other contains the construct barcodes. In this case, the file with shorter reads
is assumed to contain the sample barcodes, while the file with longer reads is
assumed to contain the construct barcodes. This mode of operation requires
that FASTQ record IDs match between the two input files.

Reference Files

Reference files map DNA barcodes to their associated identifiers. PoolQ uses
two reference files to define the rows and columns found in the scores file.

Column Reference File The column reference file (formerly known as the
“conditions” file) maps DNA barcodes to the IDs that will be presented as the
columns in the scores files. Generally the columns correspond to sample bar-
codes, which identify unique gDNA samples representing different experimental
conditions.

• It is a file with at least two columns
• The first column contains the sample barcodes sequence and the second

column contains the condition descriptions
• All other columns are ignored
• Every row must have the same number of columns
• The columns can be separated by either commas or tabs
• The file may not include any column headers or any extra columns
• Barcodes must contain only A, T, C or G
• A barcode cannot occur more than once in the file

4



• Every barcode in the conditions file must have the same length
• You can have multiple barcodes mapping to the same condition, but be

aware that if you do so, the reads for those barcodes will be counted
together, resulting in a single column in the scores file for that condition

Row Reference File The row reference file (formerly simple the “reference
file”) contains the DNA barcodes that will make up the rows in the scores
file. Generally, the rows correspond to barcodes representing shRNAs, sgRNAs,
ORFs, or other constructs utilized in a pooled experiment.

• It is a file with at least two columns
• The first column contains the construct barcode sequences, and the second

column contains the construct IDs
• All other columns are ignored
• Every row must have the same number of columns
• The columns can be separated by either commas or tabs
• The file may not include any column headers or any extra columns
• Barcode sequences must contain only A, T, C or G
• A construct ID cannot occur more than once in the file
• Every construct barcode in the reference file must have the same length
• You can have multiple construct IDs mapping to the same barcode sequence;

the scores file will report the scores for the construct barcode alongside a
comma-separated list of associated construct IDs.

The Platform Reference File The platform reference file is an optional
input file whose format is identical to that of the reference file. It consists of a
master list of known construct sequences and their construct IDs. This file is
used to provide construct IDs for barcodes encountered during the PoolQ run
that were not expected to occur. A construct is expected to occur only if it is
present in the reference file.

Row Matcher

This argument determines how PoolQ matches DNA barcodes to those in its
row reference database. There are currently two supported values, “exact” and
“mismatch”. Using “exact” requires every base to match perfectly; “mismatch”
allows up to one base of mismatch between them (no gaps or deletions allowed).

Column Matcher

This argument determines how PoolQ matches DNA barcodes to those in its
column reference database. There are currently two supported values, “exact” and
“mismatch”. Using “exact” requires every base to match perfectly; “mismatch”
allows up to one base of mismatch between them (no gaps or deletions allowed).

5



Barcode policy

Barcode policies indicate how PoolQ should locate various types of barcodes
in the reads. PoolQ supports 3 basic policies: fixed-location, search prefix,
template.

Fixed Location The fixed-location policy indicates that a barcode exists at
a single, known position within the read. For a 0-based index i, you can specify
a fixed strategy by passing FIXED@i. So a barcode located at the start of the
read is specified as FIXED@0, while a barcode located at the twelfth base into the
read is specified FIXED@11. Using the fixed location policy, you can optionally
specify how many bases to read as the barcode (sometimes reads are too short
to contain a full barcode). The length n is specified by adding :n to the end of
the policy; so the policy for finding a 6-base barcode twelve bases into the read
is specified as FIXED@11:6. If you do not specify a length, PoolQ will choose the
length based on the length of barcodes found in the corresponding reference file.

Search Prefix The search prefix policy is useful when barcodes may occur
at different positions within each read, assuming the barcode region is always
immediately preceded by some known DNA sequence. When specifying a prefix
policy, you must provide the prefix that PoolQ should look for. Optionally, you
can provide additional parameters specifying a range of bases where the search
prefix could occur within the read; as with the fixed location policy, you may
also give a barcode length.

To use the prefix policy for a DNA prefix s, specify PREFIX:s. For example,
a common DNA prefix is CACCG, which is specified PREFIX:CACCG. To indicate
that the prefix should only be located beginning at the 12th base of the read,
specify PREFIX:CACCG@11. To indicate that the prefix must occur before the
20th base of the read, specify PREFIX:CACCG@-19. These two parameters may be
specified in conjunction: PREFIX:CACCG@11-19. You can optionally specify how
many bases to read as the barcode (sometimes reads are too short to contain a
full barcode). The length n is specified by adding :n to the end of the policy; so
the policy for finding a 6-base barcode twelve bases into the read is specified as
PREFIX@11-19:6. If you do not specify a length, PoolQ will choose the length
based on the length of barcodes found in the corresponding reference file.

Template The template matching policy is useful when barcodes may occur
at different positions from read to read, but the barcode can be identified by
examining the surrounding context. Template matching also allows for the
possibility that barcodes are not made up of contiguous regions. Templates
are specified using IUPAC codes in upper- and lowercase. Lowercase bases are
used in matching, but are not extracted as part of the barcode. Uppercase
bases are used in matching and are extracted as part of the barcode. For
example the template: caccgNNNNctcnnnNNNNa indicates that we are looking
for a 20-base region that: * begins with CACCG * followed by the first four

6



bases of the barcode * then the sequence CTC, * then three more arbitrary
bases * followed by the next four bases of the barcode * then a single A Given
the read sequence TTGCACCGTTGTCTCATGACCTATGTG, notice that the template
caccgNNNNctcnnnNNNNa matches only at the 4th base (indicated 3 on the ruler)

0 1 2
012345678901234567890123456
TTGCACCGTTGTCTCATGACCTATGTG

caccgNNNNctcnnnNNNNa

The barcode that will be extracted is TTGTACCT.

To indicate that PoolQ should search for barcodes using a template t, specify
TEMPLATE:t. For example, to use the template caccgNNNNctcnnnNNNNa,
give TEMPLATE:caccgNNNNctcnnnNNNNa. As with the search prefix policy,
it is possible to limit where PoolQ searches within each read for template
matches. To indicate that the template should only be located beginning at
the 12th base of the read, specify TEMPLATE:caccgNNNNctcnnnNNNNa@11. To
indicate that the prefix must occur before the 20th base of the read, specify
TEMPLATE:caccgNNNNctcnnnNNNNa@-19. These two parameters may also be
specified in conjunction: TEMPLATE:caccgNNNNctcnnnNNNNa@11-19. Unlike
with the fixed-location and prefix search policies, you cannot limit the length of
the matched barcode.

Row Barcode Policy The row barcode policy specifies how row barcode are
located. For details on barcode policies, see the previous section.

Column Barcode Policy The column barcode policy specifies how column
barcodes are located. For details on barcode policies, see the previous section.

Count Ambiguous

This is an optional input flag that, when present, controls the handling of
barcodes encountered in reads that fuzzy-match to more than one construct in
the reference file. The default behavior is to discard ambiguously matching reads,
so they will not be included in the scores file. If this behavior is not desired,
specify this flag and all ambiguous reads will be counted for every possible
matching construct barcode. As a consequence of this behavior, the sum of the
scores for a given column may add up to more than the number of reads for a
particular condition.

Unexpected Sequence Threshold

This is an optional argument that, when present, specifies the number of unex-
pected barcodes to include in the unexpected sequence report. PoolQ will report
the most frequently occurring barcodes. The default value is 100.

7



Reads File Type

This is an optional input flag that, when present, specifies how PoolQ should
treat the reads file type. By default, PoolQ will attempt to guess whether the
reads file is a FASTQ, BAM, or text file based on the file name. If the filename
is misleading, you can specify the file type explicitly using this flag. Valid values
include BAM, FASTQ, and RAW (for plain text).

Skip Short Reads

This is an optional input flag that, when present, specifies that PoolQ should
simply ignore reads that are too short to contain both barcode sequences. By
default, PoolQ considers files containing short reads to be badly formed and
exits. By specifying this flag, you indicate that PoolQ should simply skip these
short reads; a count of the number of skipped short reads will be available in
the quality file. Currently, this flag is only supported if you have selected the
fixed barcode policy.

Compatibility mode

This is an optional input flag that, when present, specifies that PoolQ should write
scores files that are identical to those emitted by PoolQ 2.0. As described above,
the difference is in the header text. This flag is provided to make comparing
scores between PoolQ 2.0 and PoolQ 3.0 easier, and to support users who parse
scores files as part of their processing pipelines. This option is mutually exclusive
of the GCT mode.

GCT mode

This is an optional flag that directs PoolQ to emit scores in the
http://software.broadinstitute.org/cancer/software/genepattern/file-formats-
guide#GCT file format, for use with tools such as GenePattern or RIGER. It is
mutually exclusive of the PoolQ 2.0 compatibility mode flag described above.

PoolQ Outputs
PoolQ generates output files representing the matrix of read counts (or scores)
for expected sequences, a report of read counts for unexpected sequences, and a
report containing simple metrics used to help assess the overall quality of the
sequencing data. There are two optional output files that contain alternative
representations of the scores matrix. One contains the scores in log normalized
form and the other contains read counts by barcode rather than by condition.

Scores File

The scores file is a text file that contains a simple matrix of the read counts.
The columns of the matrix represent the experimental conditions, and the rows

8



of the matrix correspond the construct barcode sequences. The individual values
in each row are separated by tabs.

If you plan on loading the scores file into a spreadsheet application such as Excel,
then we recommend using a file extension such as .txt, that your spreadsheet
application will recognize as being a text file. When opening the file in Excel,
you will probably be prompted with a dialog asking you to describe the structure
of the file. In the section about separator options, be sure that the checkbox for
“Tab” is selected.

Quality Report

The quality report is a simple text file containing some extra information gathered
during the PoolQ run. The information reported here is intended to help you
assess the quality of your data, and spot problems such as an unacceptably high
frequency of uncounted reads, or mistakes in barcode tracking. We currently
report:

• The total number of reads
• The total number of reads that were successfully counted
• Out of the counted reads, the total number of single base mismatches to

the construct barcode
• Out of the counted reads, the percent that matched to both a known

sample barcode and a known construct barcode
• The average frequency of unknown sample barcode sequences
• For each sample barcode mapped to a condition, we report:

– the barcode
– the condition
– the total number of reads matching the sample barcode plus an

expected construct barcode
– the total number of reads matching the sample barcode
– the percent of the reads for the sample barcode that matched an

expected construct barcode
– the log normalized number of matches

• For each sample barcode not mapped to a condition, we report the barcode
and the total number of reads

Barcode Scores File

The barcode scores file has a similar format to the scores file, except that the
columns in the matrix represent the read counts for individual DNA barcodes
rather than for experimental conditions. If, based on the quality file, a particular
PCR appear to have been of low quality, it is possible to reaggregate scores
by condition by excluding the scores from the barcode corresponding to the
failed PCR. The barcode scores file is an optional output intended to provide
support for loading PoolQ data into the RNAi Informatics database. However,
it is available for any consumer of PoolQ data.

9



Log Normalized Scores File

The log normalized scores file has the same format as the scores file, but every
score is normalized according to the following procedure:

1. Take the raw read count for the construct ID and the condition
2. Divide by the total number of reads for that condition that matched a

construct barcode found in a reference file
3. Multiply by a constant factor of 1 million
4. Add one
5. Take the log base 2

Unexpected Sequence File

The unexpected sequence file contains a report that describes briefly the collection
of sequences found in the position where a construct barcode was expected during
the run. It is an optional output. Tracking unexpected sequences currently
results in a substantial performance penalty. We recommend that you only
generate an unexpected sequence for forensic or investigative purposes.

The unexpected sequence report contains two sections. The first section consists
of a table whose rows correspond to unexpected construct barcode sequences
and whose columns indicate the number of times each sequence was found for
each barcode. An additional column lists the construct IDs for these sequences,
if the IDs are known. These construct IDs can be provided to PoolQ via the
platform reference file, described above.

The second section describes unexpected sample barcodes and the number of
times an unexpected sequence appeared with each unexpected barcode. The
unexpected sample barcodes are listed in descending order of the number of
occurrences.

Correlation File

The correlation file contains a pairwise correlation matrix comparing the per-
construct scores for each experimental condition. The correlation metric is the
Pearson product-moment correlation.

Running PoolQ
There are two different ways you can run PoolQ: using the Graphical User
Interface (GUI), or using the Command Line Interface (CLI). But before you
can run it, you need to download the zip file and unzip it.

Prerequisites
PoolQ is built for Java 8. To run PoolQ, you will need a JRE for version 8 or
later. To compile PoolQ you will need a Java 8 JDK. You can download an
appropriate JRE or JDK from Oracle at:

10



http://www.oracle.com/technetwork/java/javase/downloads/index
.html

Downloading and Unzipping PoolQ
You can download PoolQ from an as yet undetermined location. The file you
download is a ZIP file that you will need to unzip. In most cases, this is as
simple as right-clicking on the zip file, and selecting something like “extract
contents” from the popup menu. This will create a new folder on your computer
named poolq-3.0.5, with the following contents:

• poolq3.jar
• poolq3.bat
• poolq3.sh
• test-data/

Feel free to rename the folder, and to move it to wherever you want. Be aware,
however, that the .sh and .bat files will only function properly if they can find
the poolq.jar file in the same folder.

The test-data folder contains four sets of sample input data and a Makefile that
will run PoolQ on each set, printing the full command line in the process. If you
have GNU Make installed, you can test all four sample datasets by running:

% cd test-data
% make

You can also test them individually by running:

% (cd test-data; make test-scenario1)
% (cd test-data; make test-scenario2)
% (cd test-data; make test-scenario3)
% (cd test-data; make test-scenario4)
% (cd test-data; make test-scenario5)
% (cd test-data; make test-scenario6)
% (cd test-data; make test-long-template)

Recommended JVM Settings
We recommend the following JVM settings be provided when running PoolQ:

• -Xmx4G
• -XX:+UseG1GC

This document contains a number of example command-lines for running PoolQ;
however, we only list the full JVM options once, since typing the full command
becomes unwieldy and the JVM options distract somewhat from the command-
line arguments that are passed to PoolQ itself. You can copy and paste the full
Java command from here:

11

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html


java -Xmx4G -XX:+UseG1GC -jar poolq3.jar

Running PoolQ
You can run PoolQ from any Windows, Mac, or Linux machine, but it requires
some understanding about how to launch programs from the command line on
your given operating system.

1. Open a terminal window for your operating system
2. Change directories to the poolq-3.0.5 directory

• On Windows, run:

poolq3.bat

• Or, on a UNIX-based machine, run:

./poolq3.sh

• Or, on any machine, run:

java -jar poolq3.jar

If you successfully launched PoolQ, you should see a usage message explaining
all of the command-line options:

poolq 3.0.5
Usage: poolq [options]

--row-reference <row-reference-file>
reference file for row barcodes (i.e., constructs)

--col-reference <col-reference-file>
reference file for column barcodes (i.e., conditions)

--global-reference <global-reference-file>

--row-reads <row-reads-file>
required if reads are split between two files

--col-reads <col-reads-file>
required if reads are split between two files

--reads <reads-file> required if reads are contained in a single file
--row-matcher <matcher> function used to match row barcodes against the row reference database
--col-matcher <matcher> function used to match column barcodes against the column reference database
--count-ambiguous <value>

when true, counts ambiguous fuzzy matches for all potential row barcodes
--row-barcode-policy <barcode-policy>

--col-barcode-policy <barcode-policy>

--quality <file>
--scores <file>

12



--normalized-scores <file>

--barcode-scores <file>
--correlation <file>
--unexpected-sequence-threshold <number>

--unepected-sequences <file>

--unexpected-sequence-cache <cache-dir>

--skip-unexpected-sequence-report <value>

--skip-short-reads

--compat Enable PoolQ 2.X compatibility mode
--gct Output scores in GCT format

At this point, you are ready to run PoolQ, supplying file names and locations
for the 3 file inputs and 2 or 3 file outputs. For example:

• On Windows, run:

poolq3.bat --reads reads.fastq --col-reference conditions.txt
--row-reference reference.txt --row-barcode-policy
PREFIX:CACCG@12 --col-barcode-policy FIXED:0

• Or, on a UNIX-based machine, run:

./poolq3.sh --reads reads.fastq --col-reference conditions.txt
--row-reference reference.txt --row-barcode-policy
PREFIX:CACCG@12 --col-barcode-policy FIXED:0

• Or, on any machine, run:

java -jar poolq3.jar --reads reads.fastq --col-reference
conditions.txt --row-reference reference.txt --row-barcode-policy
PREFIX:CACCG@12 --col-barcode-policy FIXED:0

The Scoring Algorithm
The reads file contains the sequencing reads. PoolQ supports any of the following
formats:

• FASTQ (including Solexa/Illumina variants)
• SAM
• BAM

PoolQ currently ignores any read sequence content besides the sample barcode
and the construct barcode. In the future, we may check the remaining sequence
to help confirm the quality of the read.

13



Most often, the entire construct barcode is included in the read. However, for files
with very short read lengths the construct barcode sequence may be truncated.
In the case of truncated construct barcode sequences, PoolQ will attempt to
match based on the available construct barcode sequence prefix.

If the read does not have a sample barcode that is an exact match to a barcode
found in the conditions file, then the line is not counted, except in the section
of the quality report devoted to counting reads for barcodes not found in the
conditions file.

Counting Reads that Match a Barcode

The PoolQ scoring algorithm always attempts to match construct barcodes
exactly to to one of the sequences provided in the reference file first. If an exact
match is found, then only the exact match is counted.

If an exact match is not found, PoolQ will attempt to match to a known construct
barcode sequence allowing a single nucleotide mismatch. An N in the construct
barcode sequence is considered a single nucleotide mismatch. The exact match
setting allows you to override the single nucleotide mismatch behavior and score
only exact matches.

If a construct barcode sequence is a single nucleotide mismatch to two or more
different barcodes, PoolQ will discard the read by default. It is possible to
override this behavior as well with the include ambiguous setting, in which case
PoolQ scores the read for every construct barcode sequence that is a single
nucleotide mismatch.

If PoolQ matches a read to a sample barcode that is mapped to a condition,
and a construct barcode that is mapped to one or more construct IDs, then the
counts are incremented for all of the matching condition/construct ID pairs.

Construct barcodes are counted as unexpected sequences if they are not success-
fully matched by the above procedure.

Contact Us
Your feedback of any kind is much appreciated. Please email us at rnaiinformat-
ics@broadinstitute.org.

14


	PoolQ
	Background
	Changes in PoolQ 3.0
	Command-line interface changes
	Scores file changes
	Quality file changes

	PoolQ Use Cases
	PoolQ Inputs
	Reads File(s)
	Reference Files
	Row Matcher
	Column Matcher
	Barcode policy
	Count Ambiguous
	Unexpected Sequence Threshold
	Reads File Type
	Skip Short Reads
	Compatibility mode
	GCT mode

	PoolQ Outputs
	Scores File
	Quality Report
	Barcode Scores File
	Log Normalized Scores File
	Unexpected Sequence File
	Correlation File

	Running PoolQ
	Prerequisites
	Downloading and Unzipping PoolQ
	Recommended JVM Settings
	Running PoolQ
	The Scoring Algorithm
	Counting Reads that Match a Barcode

	Contact Us


