PoolQ

PoolQ is a counter for indexed samples from next-gen sequencing of pooled DNA.

This documentation covers PoolQ version 3.13.8 (last updated 10/14/2025).

Background

The Broad Institute Genetic Perturbation Platform (GPP) uses Illumina se-
quencing to tally the results of pooled screens. PoolQ can process pooled
screens representing a variety of genetic perturbation techniques, including
CRISPR/Cas9, RNAi, and barcoded ORFs. We perform the following steps to
generate one or more files of sequencing reads (or “reads files”) for the pooled
screen:

1. We start with multiple genomic DNA samples; generally it is assumed
that the samples share a common pool of constructs but vary by some
experimental condition.

2. We apply PCR to the genomic DNA samples using primers that amplify
the the barcode region of each construct in the pool and attach a fixed-
length barcode uniquely identifying the DNA sample. In this way, all the
amplification products will contain the inserted sample barcode.

3. We pool all the samples, normalized to equalize barcode representation,
and run them in a single sequencing lane.

4. The sequencing process generates an output file for each sequencing lane.

PoolQ comes into play after the sequencing files have been generated. A single
PoolQ invocation processes one sequencing run. It attempts to parse out the
unique barcodes representing the sample and construct from each read. It maps
sample barcodes to conditions and construct barcodes to construct IDs, and
generates a matrix with the conditions as columns and the constructs as rows.

Changes in PoolQ 3

PoolQ was completely rewritten for version 3. The new code is faster and the
codebase is much cleaner and more maintainable. We have taken the opportunity
to make other changes to PoolQ as well.

e There are substantial changes to the command-line interface for the pro-
gram.

e The default counts file format has changed slightly, although there is
a command-line argument that indicates that PoolQ 3 should write a
backwards-compatible counts file. The differences are in headers only; file
parsers should be able to adapt easily.

e The quality file has changed somewhat. Importantly, the definition of
certain statistics has changed slightly, so quality metrics cannot be directly
compared between the the new and old versions. In addition, we no longer
provide normalized match counts.



Command-line interface changes

The PoolQ command-line interface has been reworked significantly in PoolQ 3.
There is no current migration guide between the two interfaces; however virtually
every possible configuration of PoolQ 2 is also possible with PoolQ 3. To update
your command-line arguments, consult the commands specified in the test data
Makefile for each scenario. Furthermore, there are extensive explanations of
the various parameters in subsequent sections of this document.

Counts file changes

One of the key internal changes to PoolQQ 3 was to avoid using the terms
“construct barcode” and “sample” barcode prescriptively. PoolQ 3 favors the
terms row barcode and column barcode, since the actual concepts these barcodes
represent should be of limited concern to PoolQ. As such, the default counts file
format changes its terminology slightly. Where the PoolQ 2 counts file header
read:

ConstructBarcode Construct IDs
the PoolQ 3 counts file header reads:
Row Barcode Row Barcode IDs

Note that the structure of the files have not changed, so any parser which ignores
these columns in the header need not make any changes. Parsers that use these
columns should be able to adapt trivially to the new terminology. Moreover,
PoolQ 3 supports a command line option --compat which specifies that the
counts file contain the former terminology.

Quality file changes

e Changed the “Total Reads” metric to report the total number of reads
in the file i.e., do not discard reads with Ns in the column (conditions)
barcode region. These values will be higher in PoolQ 3 than they would
have been previously for the same input data.

¢ Changed the “Matching Reads” metric to include only reads that matched
both a known row and column barcode; formerly this number included all
reads that matched a row barcode even if they did not match a column
barcode. These values will be lower in PoolQ 3 than they would have been
previously for the same input data.

e Changed the “l-base mismatch reads” metric to report the number of
one-base mismatches used to match a row barcode only if the column
barcode also matched; as above, this formerly included reads that matched
a row barcode even if the column barcode did not match. These values will
be lower in PoolQ 3 than they would have been previously for the same
input data.

o Changed the “Overall % Match: (Construct+Sample Barcode)/total reads”
heading to simply “Overall % match”, and report the % as the number



of reads matching both a row and column barcode divided by the total
number of reads in the file (i.e., do not exclude reads with Ns in the column
barcode region from the denominator). These values will be lower in PoolQ
3 than they would have been previously for the same input data.

o In the section “Read counts for sample barcodes with associated conditions”,
changed “Matched Sample Barcode” and “% Match” to count reads where
the column barcode matched and where a row barcode region was identified
(either by locating a search prefix, matching to a template, or a row barcode
start index). This excludes reads created by primer-dimers and other PCR
or sequencing errors. Number of matched column barcodes will generally
be lower than with PoolQ 2, but the percent matched will be higher, for
the same input data.

e Removed the metric “Avg. counts for unknown sample barcodes”

e Changed the “Read counts for sample barcodes without associated con-
ditions” metric to be specific to cases where a row barcode matched but
a column barcode did not; report only the top 100 unexpected column
barcodes.

e Removed the “Construct barcodes matching multiple construct IDs” section

PoolQ Use Cases

The most common usages of PoolQ falls into one of six basic scenarios, defined by
the number of sequencing files it needs to read and the way it will locate barcodes
within those files. PoolQ can process sequencing results with reads wholly
contained within one sequencing file, or with each read partially represented
within two sequencing files. It can locate barcodes that occur at a constant
offset within the reads or that occur at a variable offset within the reads. For
barcodes whose position varies within the reads, PoolQ has two approaches for
identifying the barcode region: first, by locating a fixed DNA sequence known to
immediately precede the row barcode; and second, by tiling a template sequence
along the read until a sequence of DNA matches the template. PoolQ has
additional support for processing UMI-barcoded constructs. It can process both
forward and paired-end reads, as well as pre-demultiplexed reads.

he PoolQ distribution contains sample data representing each scenario and
presents example command lines for processing a variety of use cases:

o scenariol: Fixed offset, one sequencing file

e scenario2: Variable offset, one sequencing file

o scenariod: Fixed offset, two sequencing files

e scenario4: Variable offset, two sequencing files

¢ scenariob: Template match, one sequencing file

e scenario6: Template matching, two sequencing files

e umi: UMI-barcoded constructs

o multiple-inputs: Multiplexed split across multiple FASTQs
e paired-end: Paired-end reads

e demultiplexed: Pre-demultiplexed reads



e demultiplexed-paired-end: Pre-demultiplexed paired-end reads

PoolQ Inputs

PoolQ requires 3 input files to run: the (FASTQ or SAM/BAM) file containing
the reads (the reads file); a file mapping barcodes to conditions (the conditions
file); and a file mapping row barcode sequences to barcode IDs (the reference file).
PoolQ can also take an optional input file (the platform reference file) describing
known row barcodes that are not expected to be present in the sequencing reads.
There are also a variety of optional settings that specify how PoolQ processes
the reads.

Reads File(s)

The reads file is a either a standard FASTQ file or a SAM/BAM file, containing
the reads. It may or may not be compressed with gzip. If the file is a FASTQ
file, then the file extension should be .fastq or .txt (case-insensitive). If it
is a BAM file, then the file extension should be .bam, and for a SAM file, the
extension should be . sam (case-insensitive). Files that do not follow these naming
conventions can still be used, but you must specify the file type explicitly.

If the file is compressed with gzip, then the file must have an extra .gz extension
after the .fastq, .txt, or .bam extension.

A barcode representing a row and a column are parsed out of each read. The
length of the column barcode is inferred from the contents of the conditions file.
The length of the row barcode is inferred from the contents of the reference file.
By default, the column barcode starts at the first base of the read, and the row
barcode starts at the 17th base of the read, but both of these defaults can be
overridden with an optional flag.

In some cases, reads are divided into two separate FASTQ files (BAM/SAM
is not supported in this case). One file contains the column barcodes, while
the other contains the row barcodes. In this case, the file with shorter reads
is assumed to contain the column barcodes, while the file with longer reads is
assumed to contain the row barcodes. This mode of operation requires that
FASTQ record IDs match between the two input files.

Certain sequencing technologies produce multiple reads files for a single run of
sequencing; these files could be processed by earlier versions of PoolQ by simply
concatenating them sequentially. However PoolQ now also has the ability to
read multiple files one after another; it will accumulate and report read counts
for the files in aggregate. To process multiple files at the command line, simply
provide the list of input files separated by commas. PoolQ will process the files
in the order they are provided. This option works in combination with split
reads (where row an column barcodes are split between files), but you must take
care to provide the input files of each type in corresponding order.



PoolQ can now process demultiplexed reads files. When processing demultiplexed
single-end sequencing data, do not pass a column barcode policy. Instead, the
argument to -—reads becomes a comma-separated list of column barcode-file
pairs. The pairs are delimited by a colon (:). If a file has no barcode prefix, it
is assumed to contain unmatched reads.

For paired-end sequencing mode, use the same column barcode-file pair scheme
with the arguments to ——row-reads and --rev-row-reads. It is essential that
the comma-delimited lists of files passed to ——-row-reads and -rev-row-reads
are in corresponding order.

Reference Files

Reference files map DNA barcodes to their associated identifiers. PoolQ uses
two reference files to define the rows and columns found in the counts file.

Column Reference File The column reference file (formerly known as the
“conditions” file) maps DNA barcodes to the IDs that will be presented as the
columns in the counts files. Generally the columns correspond to sample bar-
codes, which identify unique gDNA samples representing different experimental
conditions.

o It is a file with at least two columns

e The first column contains the barcode sequence and the second column
contains the condition description

e All other columns are ignored

e Every row must have the same number of columns

e The columns can be separated by either commas or tabs

o The file may not include any column headers or any extra columns

¢ Barcodes must contain only A, T, C or G

e A barcode cannot occur more than once in the file

e Every barcode in the conditions file must have the same length

¢ You can have multiple barcodes mapping to the same condition, but be
aware that if you do so, the reads for those barcodes will be counted
together, resulting in a single column in the counts file for that condition

e Barcodes with empty condition descriptions will be reported, aggregated,
as “Unlabeled Sample Barcodes”. If you need report counts for a particular
barcode separately, provide a condition name for it. Note, if you use
the condition label “Unlabeled Sample Barcodes” and have additional
barcodes with empty condition names, counts for all of these barcodes will
be aggregated and reported together.

Row Reference File The row reference file (formerly simple the “reference
file”) contains the DNA barcodes that will make up the rows in the counts
file. Generally, the rows correspond to barcodes representing shRNAs, sgRNAs,
ORFs, or other constructs utilized in a pooled experiment.



o It is a file with at least two columns

e The first column contains the barcode sequences, and the second column
contains the barcode IDs

e All other columns are ignored

e Every row must have the same number of columns

e The columns can be separated by either commas or tabs

e The file may not include any column headers or any extra columns

o Barcode sequences must contain only A, T, C or G and semantic delimeters

— Semantic delimiters are ignored during data processing; they exist for
human readability only
— For paired-end sequencing PoolQ can optionally infer the length of the
forward and reverse barcodes by splitting them on the first occurrence
of any semantic delimiter
e A barcode ID cannot occur more than once in the file
e Every barcode in the reference file must have the same length
¢ You can have multiple IDs mapping to the same barcode sequence; the
counts file will report the counts for the barcode alongside a comma-
separated list of associated IDs.

When processing paired-end sequencing data, the row reference contains the
components of the barcode found in both the forward and reverse reads, in the
orientation that the barcodes will occur in each file. PoolQ does not do any
reverse complementation when processing paired-end sequence data.

Platform Reference File The platform reference file is an optional input file
whose format is identical to that of the reference file. It consists of a master
list of known construct sequences and their construct IDs. This file is used to
provide construct IDs for barcodes encountered during the PoolQ run that were
not expected to occur. A construct is expected to occur only if it is present in
the reference file.

UMI Barcode Reference File

The UMI barcode reference file contains information about unique molecular
identifier (UMI) barcodes that may optionally be located within the reads. Unlike
other reference files, UMI reference files list DNA barcodes only. No barcode
identifiers will be parsed from the UMI reference file. As with other reference
files, the UMI barcodes must contain only A, C, G, or T and they must all have
the same length. Duplicate barcodes are ignored.

Row Matcher

This argument determines how PoolQ matches DNA barcodes to those in its
row reference database. There are currently two supported values, “exact” and
“mismatch”. Using “exact” requires every base to match perfectly; “mismatch”



allows up to one base of mismatch between them (a Hamming distance of 1).
Indels are not detected.

Column Matcher

This argument determines how PoolQ matches DNA barcodes to those in its
column reference database. There are currently two supported values, “exact” and
“mismatch”. Using “exact” requires every base to match perfectly; “mismatch”
allows up to one base of mismatch between them (no gaps or deletions allowed).

Barcode policy

Barcode policies indicate how PoolQ should locate various types of barcodes in
the reads. PoolQ supports 3 basic policies: fixed-location, search prefix, template.
Barcode policies may be specified to locate row, column, and UMI barcodes.

Some barcode policies may specify the lengths of barcodes to extract from
reads and match against reference data. If a length is specified in the barcode
policy, the length specified by the barcode policy takes precedence over any
other information. If a length is not specified, PoolQ will use the length of the
barcodes in the corresponding reference file.

In certain cases, these lengths must agree exactly. This is the case when doing
paired-end sequencing, and when using any form of template barcode policy (in
this case, the expected barcode length is determined by the template).

Fixed Location The fixed-location policy indicates that a barcode exists at a
single, known position within the read. For a 0-based index i, you can specify
a fixed strategy by passing FIXED@i. So a barcode located at the start of the
read is specified as FIXED@O, while a barcode located at the twelfth base into the
read is specified FIXED@11. Using the fixed location policy, you can optionally
specify how many bases to read as the barcode (sometimes reads are too short
to contain a full barcode). The length n is specified by adding :n to the end of
the policy; so the policy for finding a 6-base barcode twelve bases into the read
is specified as FIXED@11:6. If you do not specify a length, PoolQ will choose the
length based on the length of barcodes found in the corresponding reference file.

Search Prefix The search prefix policy is useful when barcodes may occur
at different positions within each read, assuming the barcode region is always
immediately preceded by some known DNA sequence. When specifying a prefix
policy, you must provide the prefix that PoolQ should look for. Optionally, you
can provide additional parameters specifying a range of bases where the search
prefix could occur within the read; as with the fixed location policy, you may
also give a barcode length.

To use the prefix policy for a DNA prefix s, specify PREFIX:s. For example,
a common DNA prefix is CACCG, which is specified PREFIX:CACCG. To indicate



that the prefix should only be located beginning at the 12th base of the read,
specify PREFIX:CACCG@11. To indicate that the prefix must start before the
20th base of the read, specify PREFIX:CACCGO-19 (this means that the prefix
sequence may begin at position 19 but not 20). These two parameters may be
specified in conjunction: PREFIX:CACCG@11-19. You can optionally specify how
many bases to read as the barcode (sometimes reads are too short to contain a
full barcode). The length n is specified by adding :n to the end of the policy; so
the policy for finding a 6-base barcode twelve bases into the read is specified as
PREFIX@11-19:6. If you do not specify a length, PoolQ will choose the length
based on the length of barcodes found in the corresponding reference file.

Template The template matching policy is useful when barcodes may occur
at different positions from read to read, but the barcode can be identified by
examining the surrounding context. Template matching also allows for the
possibility that barcodes are not made up of contiguous regions. Templates are
specified using TUPAC codes in upper- and lowercase. Lowercase bases are used
in matching, but are not extracted as part of the barcode. Uppercase bases are
used in matching and are extracted as part of the barcode. For example the
template: caccgNNNNctcnnnNNNNa indicates that we are looking for a 20-base
region that:

e begins with CACCG

o followed by the first four bases of the barcode

¢ then the sequence CTC,

e then three more arbitrary bases

o followed by the next four bases of the barcode

e then a single A Given the read sequence TTGCACCGTTGTCTCATGACCTATGTG,
notice that the template caccgNNNNctcnnnNNNNa matches only at the 4th
base (indicated 3 on the ruler)

0 1 2

012345678901234567890123456

TTGCACCGTTGTCTCATGACCTATGTG
caccgNNNNctcnnnNNNNa

The barcode that will be extracted is TTGTACCT.

To indicate that PoolQ should search for barcodes using a template t, specify
TEMPLATE:t. For example, to use the template caccgNNNNctcnnnNNNNa,
give TEMPLATE:caccgNNNNctcnnnNNNNa. As with the search prefix policy,
it is possible to limit where PoolQ searches within each read for template
matches. To indicate that the template should only be located beginning at
the 12th base of the read, specify TEMPLATE: caccgNNNNctcnnnNNNNa@11. To
indicate that the prefix must start before the 20th base of the read, specify
TEMPLATE: caccgNNNNctcnnnNNNNa@-19. These two parameters may also be
specified in conjunction: TEMPLATE:caccgNNNNctcnnnNNNNa@11-19. Unlike
with the fixed-location and prefix search policies, you cannot limit the length



of the matched barcode. The length of the barcodes in the reference file must
match the length of extracted barcode ezactly.

Row Barcode Policy The row barcode policy specifies how row barcodes are
located. For details on barcode policies, see the previous section.

Column Barcode Policy The column barcode policy specifies how column
barcodes are located. For details on barcode policies, see the previous section.

UMI Barcode Policy The UMI barcode policy specifies how UMI barcodes
are located. When reads are split between two files, PoolQ will search for UMI
barcodes in the same file/read that it uses to locate row barcodes.

Reverse Row Barcode Policy The reverse row barcode policy specifies
how row barcodes are located in the reverse read when processing paired-end
sequence data. PoolQ expects the barcode policy to match the sequence data as
it is found in the input data. It does not do any reverse complementation for
paired-end sequence data processing.

Count Ambiguous

This is an optional input flag that, when present, controls the handling of
barcodes encountered in reads that fuzzy-match to more than one barcode in the
reference file. The default behavior is to discard ambiguously matching reads, so
they will not be included in the counts file. If this behavior is not desired, specify
this flag and all ambiguous reads will be counted for every possible matching row
barcode. As a consequence of this behavior, the sum of the counts for a given
column may add up to more than the number of reads for a particular condition.

Unexpected Sequence Threshold

This is an optional argument that, when present, specifies the number of unex-
pected barcodes to include in the unexpected sequence report. PoolQ will report
the most frequently occurring barcodes. The default value is 100.

Reads File Type

This is an optional input flag that, when present, specifies how PoolQ should
treat the reads file type. By default, PoolQ will attempt to guess whether the
reads file is a FASTQ, BAM, or text file based on the file name. If the filename
is misleading, you can specify the file type explicitly using this flag. Valid values
include BAM, FASTQ, and RAW (for plain text).

Skip Short Reads

This is an optional input flag that, when present, specifies that PoolQ should
simply ignore reads that are too short to contain both barcode sequences. By



default, PoolQ considers files containing short reads to be badly formed and
exits. By specifying this flag, you indicate that PoolQ should simply skip these
short reads; a count of the number of skipped short reads will be available in
the quality file. Currently, this flag is only supported if you have selected the
fixed barcode policy.

Read Id Check Policy

When processing sequencing data with indexing reads split into a separate FASTQ
file, PoolQ attempts to match the FASTQ read IDs between the FASTQ records
for the indexing and regular reads. This behavior is controlled by the argument
--read-id-check-policy. The default mode is strict, which assumes that
the read IDs will match exactly. In some cases, Illumina sequencing machines
use a similar but not identical read ID. In this case, to relax the restriction but
still check that the read IDs match, you can use illumina mode. If this fails,
and you are very certain your FASTQ files go together, you can disable this
check entirely by running in lax mode.

Always Match Column Barcodes

This is an advanced, optional input flag that, when present, specifies how PoolQ
should count the total number of reads found matching each column barcode,
which is reported in the quality file. The default behavior is to count column
barcodes that match to the column reference file only if a row barcode was
successfully located in the read as well (even if that row barcode did not match
to a barcode in the row reference file). With this setting enabled, PoolQ counts
column barcodes regardless of whether a row barcode was found or not. This
metric can be useful for certain types of analyses.

Compatibility mode

This is an optional input flag that, when present, specifies that PoolQ should write
counts files that are identical to those emitted by PoolQ 2.0. As described above,
the difference is in the header text. This flag is provided to make comparing
counts between PoolQ 2 and PoolQ 3 easier, and to support users who parse
counts files as part of their processing pipelines. This option is mutually exclusive
of the GCT mode.

GCT mode

This is an optional flag that directs PoolQ to emit counts in the
http://software.broadinstitute.org/cancer/software/genepattern /file-formats-
guide#GCT file format, for use with tools such as GenePattern or RIGER. It is
mutually exclusive of the PoolQ 2.0 compatibility mode flag described above.

10



Barcode length inference

In order to extract row or column barcodes from FASTQ files, PoolQ needs to
know the length of the barcodes it expects to extract. For convenience, PoolQ
can infer the length of barcodes from the rows found in the appropriate reference
files. However, the user may specify a barcode length in the barcode policies
as well. In every case, the barcode length specified in the barcode policy takes
precedence over an inferred barcode length.

When processing paired end sequence data, PoolQ will infer the length of the
barcodes from the rows of the reference file by searching for the first occurrence
of a semantic delimiter (:, -, or ;). For example, if the reference file contains
barcodes of the form CACCG; CCGG, PoolQ will infer that the forward read contains
barcodes of length 5, while the reverse read contains barcodes of length 4. If
there are multiple semantic delimiters in the reference barcodes, inference is no
longer possible, and barcode lengths must be specified by the barcode policy.

PoolQ Outputs

PoolQ generates output files representing the matrix of read counts (or counts)
for expected sequences, a report of read counts for unexpected sequences, and a
report containing simple metrics used to help assess the overall quality of the
sequencing data. There are two optional output files that contain alternative
representations of the counts matrix. One contains the counts in log normalized
form and the other contains read counts by barcode rather than by condition.

Counts File

The counts file is a text file that contains a simple matrix of the read counts.
The columns of the matrix represent the experimental conditions, and the rows
of the matrix correspond the row barcode sequences. The individual values in
each row are separated by tabs.

If you plan on loading the counts file into a spreadsheet application such as Excel,
then we recommend using a file extension such as .txt, that your spreadsheet
application will recognize as being a text file. When opening the file in Excel,
you will probably be prompted with a dialog asking you to describe the structure
of the file. In the section about separator options, be sure that the checkbox for
“Tab” is selected.

Quality Report

The quality report is a simple text file containing some extra information gathered
during the PoolQ run. The information reported here is intended to help you
assess the quality of your data, and spot problems such as an unacceptably high
frequency of uncounted reads, or mistakes in barcode tracking. We currently
report:

11



e The total number of reads
e The total number of reads that were successfully counted
e Out of the counted reads, the total number of single base mismatches to
the row barcode
e Out of the counted reads, the percent that matched to both a known
column barcode and a known row barcode
e The average frequency of unknown column barcode sequences
e For each column barcode mapped to a condition, we report:
— the barcode
— the condition
— the total number of reads matching the column barcode plus an
expected row barcode
— the total number of reads matching the column barcode and containing
a valid row barcode region (by either containing a search prefix,
matching the search template, or the row barcode start index); when
run with --always-count-col-barcodes, this is simply the total
number of reads matching that column barcode
— the percent of reads for the column barcode with a valid row barcode
region that successfully matched a row barcode in the reference file
— the log normalized number of matches
e For each column barcode not mapped to a condition, we report the barcode
and the total number of reads

Barcode Counts File

The barcode counts file has a similar format to the counts file, except that the
columns in the matrix represent the read counts for individual DNA barcodes
rather than for experimental conditions. If, based on the quality file, a particular
PCR appear to have been of low quality, it is possible to reaggregate counts
by condition by excluding the counts from the barcode corresponding to the
failed PCR. The barcode counts file is an optional output intended to provide
support for loading PoolQ data into the RNAi Informatics database. However,
it is available for any consumer of PoolQ data.

Log Normalized Counts File

The log normalized counts file has the same format as the counts file, but every
score is normalized according to the following procedure:

1. Take the raw read count for the row barcode ID and the condition

2. Divide by the total number of reads for that condition that matched a
barcode found in a reference file

Multiply by a constant factor of 1 million

Add one

5. Take the log base 2

-

12



Unexpected Sequence File

The unexpected sequence file contains a report that describes briefly the collection
of sequences found in the position where a row barcode was expected during the
run. It is an optional output. Tracking unexpected sequences currently results
in a substantial performance penalty. We recommend that you only generate an
unexpected sequence for forensic or investigative purposes.

The unexpected sequence report contains two sections. The first section consists
of a table whose rows correspond to unexpected row barcode sequences and
whose columns indicate the number of times each sequence was found for each
barcode. An additional column lists the barcode IDs for these sequences, if
the IDs are known. These row barcode IDs can be provided to PoolQ via the
platform reference file, described above.

The second section describes unexpected column barcodes and the number of
times an unexpected sequence appeared with each unexpected barcode. The
unexpected column barcodes are listed in descending order of the number of
occurrences.

Correlation File

The correlation file contains a pairwise correlation matrix comparing the per-row
barcode counts for each experimental condition. The correlation metric is the
Pearson product-moment correlation.

UMI Quality file

When running in UMI mode, PoolQ@ writes a UMI quality file, which lists the
read counts for expected UMI barcodes as well as the top 100 unexpected UMI
barcodes (along with their frequencies). Expected UMI barcodes are listed in
lexicographical order (eg, AAAAAA to TTTTTT). Unexpected UMI barcodes are
listed in descending order by frequency.

UMI Counts Directory

When running in UMI mode, PoolQ may generate a large number of counts files.
To make file management easier, PoolQ allows the user to specify a directory
where the UMI-barcoded counts files will be written. If this option is not
specified, the default is to make a directory called umi-counts and place the
UMI-barcoded counts files there.

UMI Barcode Counts Directory

When running in UMI mode, PoolQ may generate a large number of bar-
code counts files. To make file management easier, PoolQ allows the user to
specify a directory where the UMI-barcoded barcode counts files will be writ-

13



ten. If this option is not specified, the default is to make a directory called
umi-barcode-counts and place the UMI-barcoded barcode counts files there.

Running PoolQ

PoolQ currently is a Java application with a command-line interface (CLI). But
before you can run it, you need to download the zip file and unzip it.

Prerequisites

PoolQ is built for Java 11. To run PoolQ, you will need a JRE for version 11 or
later. To compile PoolQ you will need a Java 11 JDK. You can download an
appropriate JRE or JDK from Oracle at:

http://www.oracle.com/technetwork/java/javase/downloads/index.
html

Downloading and Unzipping PoolQ

You can download PoolQ from an as yet undetermined location. The file you
download is a ZIP file that you will need to unzip. In most cases, this is as
simple as right-clicking on the zip file, and selecting something like “extract
contents” from the popup menu. This will create a new folder on your computer
named poolq-3.13.0, with the following contents:

e poolq3.jar
e poolqg3.bat
e poolg3.sh

e test-data/

Feel free to rename the folder, and to move it to wherever you want. Be aware,
however, that the .sh and .bat files will only function properly if they can find
the poolq. jar file in the same folder.

The test-data folder contains seven sets of sample input data and a Makefile that
will run PoolQ on each set, printing the full command line in the process. If you
have GNU Make installed, you can test all seven sample datasets by running:

% cd test-data
% make

You can also test them individually by running:

% (cd test-data; make test-scenariol)
% (cd test-data; make test-scenario?2)
% (cd test-data; make test-scenario3)
% (cd test-data; make test-scenario4)
% (cd test-data; make test-scenariob)
% (cd test-data; make test-scenario6)

14


http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

h
h
h
h

(cd test-data; make test-long-template)

(cd test-data; make test-paired-end)

(cd test-data; make test-demultiplexed)

(cd test-data; make test-demultiplexed-paired-end)

Recommended JVM Settings
We recommend the following JVM settings be provided when running PoolQ:

-Xmx4G
-XX:+UseG1GC

This document contains a number of example command-lines for running PoolQ);
however, we only list the full JVM options once, since typing the full command
becomes unwieldy and the JVM options distract somewhat from the command-
line arguments that are passed to PoolQ itself. You can copy and paste the full
Java command from here:

java -Xmx4G -XX:+UseG1GC -jar poolq3.jar

Running PoolQ

You can run PoolQ from any Windows, Mac, or Linux machine, but it requires
some understanding about how to launch programs from the command line on
your given operating system.

1
2

. Open a terminal window for your operating system
. Change directories to the poolgq-3.13.0 directory

On Windows, run:

poolg3.bat

Or, on a UNIX-based machine, run:

./poolg3.sh
Or, on any machine, run:

java -jar poolq3.jar

If you successfully launched PoolQ, you should see a usage message explaining

all of the command-line options:

poolqg3 3.13.0
Usage: poolq [options]

—-row-reference <file>
—--col-reference <file>
——umi-reference <file>

--global-reference <file>

—--row-reads <files>

reference file for row barcodes (i.e., constructs)
reference file for column barcodes (i.e., conditions)

required if reads are split between two files or for demultiplex

15



--rev-row-reads <files> required for processing paired-end sequencing data
--col-reads <files> required if reads are split between two files
--reads <files> required if reads are contained in a single file
--read-id-check-policy <policy>
read ID check policy; one of [lax, strict, illumina]
--demultiplexed when true, expects demultiplexed FASTQ files
--row-matcher <matcher> function used to match row barcodes against the row reference da
--col-matcher <matcher> function used to match column barcodes against the column refere:
--count-ambiguous <value>
when true, counts ambiguous fuzzy matches for all potential row 1
--row-barcode-policy <barcode-policy>
--rev-row-barcode-policy <barcode-policy>
--col-barcode-policy <barcode-policy>
--umi-barcode-policy <barcode-policy>
--umi-counts-dir <file>
--umi-barcode-counts-dir <file>
--quality <file>
--condition-barcode-counts-summary <file>
-—counts <file>
--normalized-counts <file>
--barcode-counts <file>
--scores <file>
--normalized-scores <file>
--barcode-scores <file>
--correlation <file>
--run-info <file>
--unexpected-sequence-threshold <number>
--unexpected-sequence-max-sample-size <number>
--unexpected-sequences <file>
-—umi-quality <file>
--unexpected-sequence-cache <cache-dir>
--skip-unexpected-sequence-report
--skip-short-reads
--always-count-col-barcodes
Count each column barcode regardless of whether a row barcode was
--compat Enable PoolQ 2.X compatibility mode
--gct Output counts in GCT format

At this point, you are ready to run PoolQ, supplying file names and locations
for the 3 file inputs and 2 or 3 file outputs. For example:

e On Windows, run:

poolg3.bat --reads reads.fastq --col-reference conditions.txt
--row-reference reference.txt --row-barcode-policy
PREFIX:CACCGQ@12 --col-barcode-policy FIXED:0

¢ Or, on a UNIX-based machine, run:

16



./poolq3.sh --reads reads.fastq --col-reference conditions.txt
--row-reference reference.txt --row-barcode-policy
PREFIX:CACCG@12 --col-barcode-policy FIXED:0

¢ Or, on any machine, run:

java -jar poolq3d.jar --reads reads.fastq --col-reference

conditions.txt --row-reference reference.txt --row-barcode-policy

PREFIX:CACCGQ@12 --col-barcode-policy FIXED:0

The Scoring Algorithm

The reads file contains the sequencing reads. PoolQ supports any of the following
formats:

o FASTQ (including Solexa/Illumina variants)
o SAM
« BAM

Most often, the entire row barcode is included in the read. However, for files
with very short read lengths the row barcode sequence may be truncated. In the
case of truncated row barcode sequences, PoolQ will attempt to match based on
the available row barcode sequence prefix.

If the read does not have a column barcode that is an exact match to a barcode
found in the conditions file, then the line is not counted, except in the section
of the quality report devoted to counting reads for barcodes not found in the
conditions file.

Counting Reads that Match a Barcode

The PoolQ scoring algorithm always attempts to match barcodes exactly to to
one of the sequences provided in the reference file first. If an exact match is
found, then only the exact match is counted.

If an exact match is not found, PoolQ will attempt to match to a known allowing
a single nucleotide mismatch. An N in the row barcode sequence is considered a
single nucleotide mismatch. The exact match setting allows you to override the
single nucleotide mismatch behavior and score only exact matches.

If a row barcode sequence is a single nucleotide mismatch to two or more different
barcodes, PoolQ will discard the read by default. It is possible to override this
behavior as well with the include ambiguous setting, in which case PoolQ counts
the read for every row barcode sequence that is a single nucleotide mismatch.

If PoolQ matches a read to a column barcode that is mapped to a condition,
and a row barcode that is mapped to one or more row barcode IDs, then the
counts are incremented for all of the matching condition/row barcode ID pairs.

Row barcodes are counted as unexpected sequences if they are not successfully
matched by the above procedure.

17



Using PoolQ on Demultiplexed Data

PoolQ was designed to quantify multiplexed DNA sequence data, and its features
and interface are specifically designed for that use case. However, it is still
possible to use PoolQ to quantify demultiplexed data. PoolQ still requires a
column barcode, representing the samples. So, the simplest way to process
demultiplexed data is to create a “dummy” column reference file such as:

A,Sample
C,Sample
G,Sample
T,Sample

If you provide a column barcode policy of FIXED@O, PoolQ will use the first
base of each read as its demultiplexing barcode. The column reference file maps
each base to the same sample, named “Sample”. Note that in this case if the
first base of a read is N, it will not match to a barcode in the sample reference
file, and the read will not be counted as a match. If this is undesirable, you
can additionally specify that PoolQ should use the mismatch barcode matching
scheme for column barcodes.

Contact Us

To report a problem with PoolQ, please use the GitHub issue tracking system.
For all other inquiries, please contact us via https://portals.broadinstitute.org/
gppx/portals/broad /contactus

18


https://github.com/broadinstitute/poolq/issues
https://portals.broadinstitute.org/gppx/portals/broad/contactus
https://portals.broadinstitute.org/gppx/portals/broad/contactus

	PoolQ
	Background
	Changes in PoolQ 3
	Command-line interface changes
	Counts file changes
	Quality file changes

	PoolQ Use Cases
	PoolQ Inputs
	Reads File(s)
	Reference Files
	UMI Barcode Reference File
	Row Matcher
	Column Matcher
	Barcode policy
	Count Ambiguous
	Unexpected Sequence Threshold
	Reads File Type
	Skip Short Reads
	Read Id Check Policy
	Always Match Column Barcodes
	Compatibility mode
	GCT mode
	Barcode length inference

	PoolQ Outputs
	Counts File
	Quality Report
	Barcode Counts File
	Log Normalized Counts File
	Unexpected Sequence File
	Correlation File
	UMI Quality file
	UMI Counts Directory
	UMI Barcode Counts Directory

	Running PoolQ
	Prerequisites
	Downloading and Unzipping PoolQ
	Recommended JVM Settings
	Running PoolQ
	The Scoring Algorithm
	Counting Reads that Match a Barcode

	Using PoolQ on Demultiplexed Data
	Contact Us


