

Last Modified: February 2019; addition of pRosettav2

Last Reviewed: February 2019

Protocol: Puromycin and blasticidin titration

Brief Description:

A lentiviral construct carrying an antibiotic resistance gene will allow selection of the cell population that has integrated that transgene. This protocol describes a method to establish a dose of puromycin or blasticidin to select the transgenic cells. The pRosetta (aka pLKO_TRC060) (PuroR, BlastR, GFP) or pRosettav2 (PuroR, BlastR, HygroR, GFP) lentiviruses are available from GPP (gpp-reagents@broadinstitute.org).

Prior to this assay, the appropriate concentration of polybrene must be optimized for the cells:

- Polybrene sensitivity curve (see **Protocol: Optimization of lentiviral transduction using spinfection**)

Materials and reagents required:

- ~20 million cells
- 6-well and 12-well plates
- Polybrene
- 1 mL pRosetta or pRosettav2 lentivirus
- V-bottomed 96-well plate
- Flow buffer (PBS, 2% FBS, 5µM EDTA)
- Flow cytometer
- 10 mg/mL puromycin (Cat# P9620, Sigma Aldrich)
- 10 mg/mL blasticidin (Cat# A1113903, Life Technologies)

Procedure

Day 0 AM: Infection

1. Check cells under the microscope to ensure they are in good health and around 80-90% confluent.
2. Aspirate media, wash cells with PBS, trypsinize, quench, and count.
3. Thaw the virus on ice or at room temperature, **do not thaw in the water bath**.
4. Make a suspension of cells at a concentration of 3E6 cells/mL in a total of 5 mL and add a 2X dose of polybrene.
5. Seed 1 mL of cell suspension as an NIC (no-infection control) into one 12-well.

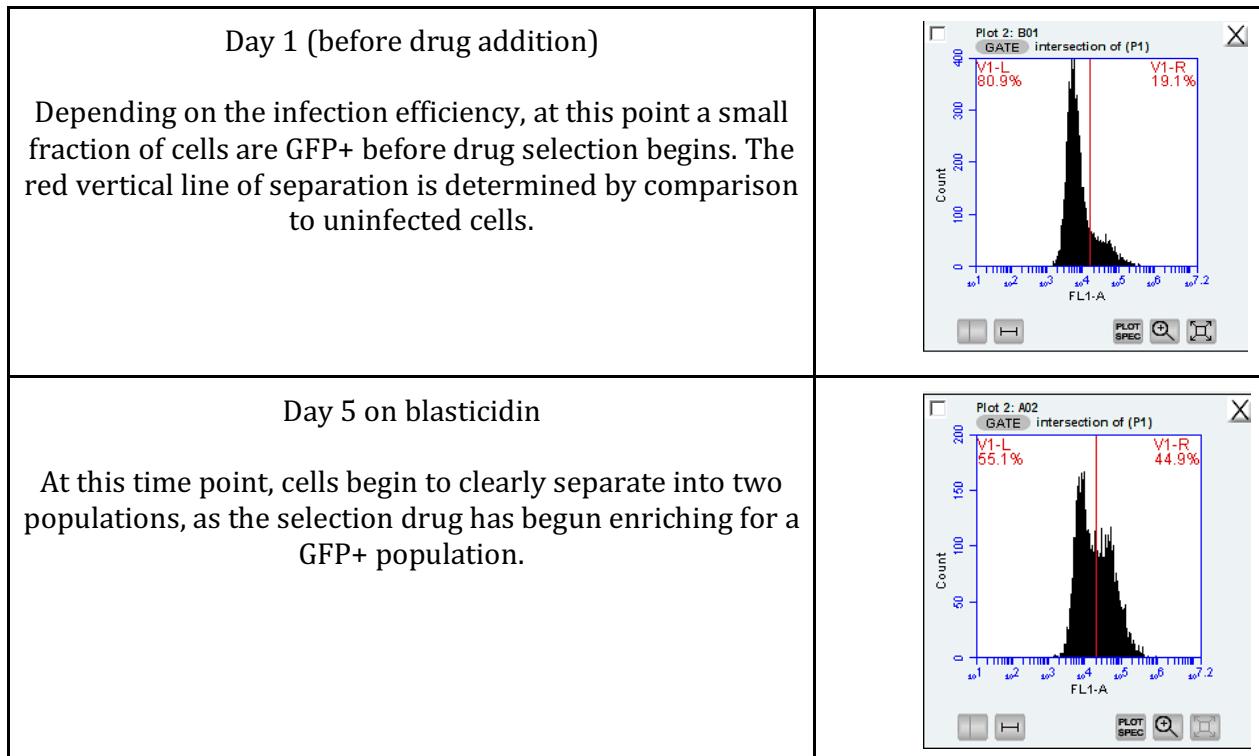
6. Seed 1 mL of cell suspension into 3 other wells, one for a low, medium and high virus volume. Suggested pRosetta virus volumes are 20, 100 and 500 μ L. The objective is to be able to choose a virus volume that yields an infection efficiency of ~30%.
7. Add the designated volumes of virus to the wells.
8. Bring each well up to 2 mL total with media.
9. Spin plates 930g for 2 hours at 30°C.
10. When centrifugation is complete, add 2 mL of media to each well dropwise and place in a 37°C incubator overnight.

Day 1 AM: Flow Cytometry and 6-well Plating

1. From each well, aspirate media, trypsinize cells (200 μ L trypsin) and quench in 800 μ L of media.
2. Take 200 μ L of resuspended cells from each well and seed into a V-bottomed 96-well plate for flow cytometry. Add 100 μ L flow buffer (PBS, 2% FBS, 5 μ M EDTA) to each well and mix.
3. Use the NIC cells to draw appropriate gates for EGFP-negative cells, then assay the range of virus volumes via flow cytometry. Continue the experiment with the cells from the virus volume that yields closest to 30% GFP+ cells.
4. Add 5 mL of media to each well of 2x 6-well plates (one for puromycin and one for blasticidin), then seed 150,000 cells per well. A NIC is no longer needed.
5. Incubate plates at 37°C.

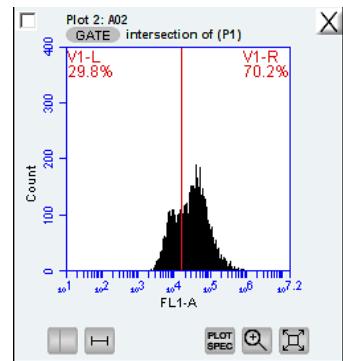
Day 1 PM: Drug Addition

1. Choose a range of six doses for each drug and label the 6-well plates. Recommended for puromycin: 0, 0.25, 0.5, 1, 2, 4 μ g/mL. For Blasticidin: 0, 2, 4, 8, 16, 32 μ g/mL.
2. Dilute the 10 mg/mL stocks to 0.5 mg/mL for puromycin and 1 mg/mL for blasticidin and add the appropriate volumes as follows. **Include a no-drug control on each plate.**

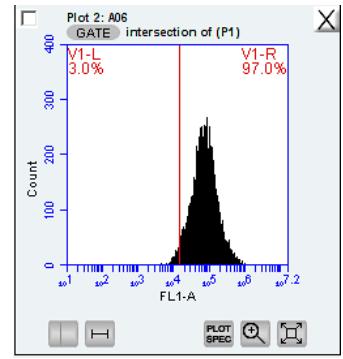

	Dose (μ g/mL)	Total media Volume (mL)	Volume of working stock (0.5 mg/mL puro and 1 mg/mL blast) to add per well (μ L)
Puro	0	5	0
	0.25	5	2.5
	0.5	5	5
	1	5	10
	2	5	20
	4	5	40

	Dose (ug/mL)	Total media Volume (mL)	Volume of working stock (0.5 mg/mL puro and 1 mg/mL blast) to add per well (uL)
Blast	0	5	0
	2	5	5
	4	5	10
	8	5	20
	16	5	40
	32	5	250

Day 3-15: Flow Cytometry and Passaging


1. Passage cells every couple of days, or when they reach ~90% confluence. Each well might need to be passaged at different times.
2. Set aside 200 uL to assay each condition by flow cytometry. Use the no-drug control wells to draw appropriate gates for EGFP-negative cells.
3. Choose the lowest dose that achieves 95% GFP+ in the majority of wells within ~day 7 for puromycin ~day 14 for blasticidin. Various cell lines will take different amount of time to reach this point, and the experiment may be continued as long as needed.

Here are a few representative flow plots (live cell population gated using forward and side scatter to exclude debris) from an experiment with the G402 cell line:


Day 8 on blasticidin

At this point, drug selection should be progressing, with a distinct shift towards a growing GFP+ population.

Day 15 on blasticidin

Drug selection at most doses should be nearly complete at this point, thus showing >90% GFP+. There may still be a small fraction of GFP- cells, most likely at lower doses, but at least some doses in the range chosen should show nearly complete selection (>95% GFP).

