Reading PoolQ Files, Assessing Screen Quality, and Hit Call Considerations

Guidance from the GPP regarding analysis following a standard pooled screening experiment

Updated 10/15/2020

This is a frequently updated file, please check back regularly for the current version at the Pooled Screen Analysis Guide link at https://portals.broadinstitute.org/gpp/public/ For reference and more in depth discussion see literature published from the GPP regarding general pooled-screening design and analysis:

Piccioni F, Younger ST, Root DE, Curr Protoc Mol Biol, 2018 Jan 16;121:32.1.1-32.1.21

Doench JG, *Nat Rev Genet*, 2018 Feb;19(2):67-80

Doench JG, Hanna RE, Nat Biotechnol, 2020 Jul;38(7):813-823

Overview

- What is in the PoolQ analysis you received from GPP?
- Graphs you should look at to determine the quality of your data
- Calling your hits: some guidelines

What is in the PoolQ analysis you received from GPP?

First, we'll guide you through the PoolQ analysis provided by the GPP When you click the link sent to you in your email you should see the following menu of links and files:

PoolQ Analysis: Example_Screen

Sample Example Screen

Clone Pool

→ CP0041

Run Date

Lacksquare 2020-10-08 17:30

PoolQ Input Files

	Download	Filename	Description
1	.CSV	Example_Screen_Conditions.csv	CSV file mapping sample barcodes to experimental conditions
2	.CSV	CP0041_reference_20160112.csv	CSV file mapping construct barcodes to barcode identifiers
3	<u>.gz</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes
4	<u>.gz</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes

PoolQ Output Files

	Download	Filename	Description
1	<u>.txt</u>	counts-Example_Screen.txt	PoolQ counts matrix
2	<u>.txt</u>	quality-Example_Screen.txt	PoolQ quality report
3	<u>.txt</u>	lognorm-Example_Screen.txt	Log-normalized counts matrix
4	<u>.txt</u>	correlation-Example_Screen.txt	Condition scores correlation matrix
5	<u>.txt</u>	barcodecounts-Example_Screen.txt	Counts by condition barcode
6	<u>.txt</u>	runinfo-Example_Screen.txt	PoolQ runtime information
7	<u>.txt</u>	data-integrity-Example_Screen.txt	Janssen discovery data integrity (DDI) document [?]

FASTQC Reports

	Link	Download	Filename	Description
1	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes FASTQC analysis
2	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes FASTQC analysis

 \rightarrow Go to the pooled screen analysis page

Now, let's look at some of the PoolQ outputs: First, we highlight the CHIP file link.

PoolQ Analysis: Example_Screen

PoolQ Input Files

	Download	Filename	Description
1	.CSV	Example_Screen_Conditions.csv	CSV file mapping sample barcodes to experimental conditions
2	.CSV	CP0041_reference_20160112.csv	CSV file mapping construct barcodes to barcode identifiers
3	<u>.gz</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes
4	<u>.gz</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes

PoolQ Output Files

	Download	Filename	Description
1	<u>.txt</u>	counts-Example_Screen.txt	PoolQ counts matrix
2	<u>.txt</u>	quality-Example_Screen.txt	PoolQ quality report
3	<u>.txt</u>	lognorm-Example_Screen.txt	Log-normalized counts matrix
4	<u>.txt</u>	correlation-Example_Screen.txt	Condition scores correlation matrix
5	<u>.txt</u>	barcodecounts-Example_Screen.txt	Counts by condition barcode
6	<u>.txt</u>	runinfo-Example_Screen.txt	PoolQ runtime information
7	<u>.txt</u>	data-integrity-Example_Screen.txt	Janssen discovery data integrity (DDI) document [?]

FASTQC Reports

	Link	Download	Filename	Description
1	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes FASTQC analysis
2	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes FASTQC analysis

 \rightarrow Go to the <u>pooled screen analysis</u> page

What are CHIP files?

- CHIP files map barcodes (eg. sgRNAs) to genes
- CHIP files are updated regularly to reflect changes to genome annotations
- Multiple versions are provided, use the one marked "Preferred" (uses of the other alternative versions can be explained as needed)
- All screens being compared to one another should use the same CHIP file
- CHIP files are tsv formatted text files with three columns: 1. Barcode (eg. sgRNA), 2. Gene Symbol, and 3. Gene ID for any matching genes. Note: Barcodes that match more than 1 gene will be listed in <u>multiple rows</u>.
- CHIP files can be opened in EXCEL and Text Edit, as well as other applications

The following table should appear after you have clicked on the CHIP file link from your PoolQ output page. Here the preferred CHIP file version is boxed in red.

	Туре	File	Last Changed	Target	Match	Description
1	Reference [?]	CP0041 reference 20160112.csv	2016-01-12	n/a	n/a	Lists all 20mer barcodes contained in the pool, with their associated construct ID(s), if any. Used during initial sequence deconvolution, e.g. with PoolQ.
2	CHIP [?]	CP0041 17mer 20180831.chip	2018-08-31	gene	lax [?]	(LEGACY) 20mer barcode to gene mapping via lax [?] match to CDS regions only.
3	CHIP [?]	CP0041 GRCh38 NCBI lax gene 20200612.chip	2020-06-12	gene	lax [?]	20mer barcode to gene mapping via lax [?] sgRNA sequence match to NCBI-annotated genes in GRCh38 primary assembly.
4	CHIP [?]	CP0041 GRCh38 NCBI strict gene 20200612.chip	2020-06-12	gene	strict [?]	(PREFERRED) 20mer barcode to gene mapping via strict [?] sgRNA sequence match to NCBI-annotated genes in GRCh38 primary assembly.
5	CHIP [?]	CP0041 origtarget 20191021.chip	2019-10-21	gene	n/a	20mer barcode to gene mapping using construct's originally intended target gene, if known.
6	BED [?]	CP0041 9606 GRCh37 20181031 ontarget.bed	2018-10-31	n/a	n/a	Genome annotation track data in the UCSC BED format, with all perfect sgRNA target sequence (20mer) matches at PAM sites in target assembly GRCh37.
7	BED [?]	CP0041 9606 GRCh38 20181031 ontarget.bed	2018-10-31	n/a	n/a	Genome annotation track data in the UCSC BED format, with all perfect sgRNA target sequence (20mer) matches at PAM sites in target assembly GRCh38.
3)	Download CSV			lin -		

There are some projects involving unique custom clone pools with unsupported elements for which a CHIP file doesn't exist. Bear with us, and we will work with you to create the custom files you may require for your analysis.

Inside the PoolQ Link provided to you by GPP: Quality File

PoolQ Analysis: Example_Screen

Sample

L→ Example_Screen Clone Pool CP0041 Run Date 2020-10-08 17:30

PoolQ Input Files

	Download	Filename	Description
1	.CSV	Example_Screen_Conditions.csv	CSV file mapping sample barcodes to experimental conditions
2	.CSV	CP0041_reference_20160112.csv	CSV file mapping construct barcodes to barcode identifiers
3	<u>.gz</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes
4	<u>.gz</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes

PoolQ Output Files

	Download	Filename	Description	
1	<u>.txt</u>	counts-Example_Screen.txt	PoolQ counts matrix	
2	<u>.txt</u>	quality-Example_Screen.txt	PoolQ quality report	Ouality File
3	<u>.txt</u>	lognorm-Example_Screen.txt	Log-normalized counts matrix	Quanty inc
4	<u>.txt</u>	correlation-Example_Screen.txt	Condition scores correlation matrix	
5	<u>.txt</u>	barcodecounts-Example_Screen.txt	Counts by condition barcode	
6	<u>.txt</u>	runinfo-Example_Screen.txt	PoolQ runtime information	
7	<u>.txt</u>	data-integrity-Example_Screen.txt	Janssen discovery data integrity (DDI) document [?]	

FASTQC Reports

	Link	Download	Filename	Description
1	.html	<u>.zip</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes FASTQC analysis
2	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes FASTQC analysis

→ Go to the pooled screen analysis page

Quality file from PoolQ

						Typically we use Hiseq 2500, which should produce
Total reads:	171425684					around 120-180 million reads per sequencing lane.
Matching re	ads: 134214114					
1-base misn	natch reads: 0					
						Unloss your plate has an
Overall % m	atch: 78.29					
						unusually high number of
Reads with	no construct barcode: 777	5868				empty wells this number
Max constru	ict barcode index: 30					should be 60-90%.
Min constru	ct barcode index: 11					
Avg construe	ct barcode index: 25.68					
Read counts	for sample barcodes with	n associated co	nditions:			
Barcode	Condition	Matched (Construct+ Sample Barcode)	Matched Sample Barcode	% Match	Normalized Match	should be 60-90%.
TTGAACCG	Sample 1 Drug Rep 1	1753194	2045733	85.7	13.32	
AATCCAGC	Sample 1_Drug Rep 1	1811679	2108036	85.94	13.368	
CCGAGTTA	Sample 1_Drug_Rep 1	1726277	2003125	86.18	13.298	
AACTGTTA	Sample 1_Drug_Rep 1	1780094	2066669	86.13	13.342	Wells without template
TTGAGTAT	Sample 1_Drug_Rep 1	1855605	2162203	85.82	13.402	should have few
TTCTCAGC	Sample 1_Drug_Rep 1	1895738	2213784	85.63	13.433	matching reads
CCTCCAAT	Sample 1_Drug_Rep 1	1778196	2074891	85.7	13.341	
TTAGACTA	Sample 1_Drug_Rep 2	1889653	2206000	85.66	13,428	
GGTCACCG	Sample 1_Drug_Rep 2	1706999	2005499	85.12	13.282	
CCTCTGTA	Sample 1_Drug_Rep 2	2019307	2358690	85.61	13.524	
TTGACAAT	Sample 1_Drug_Rep 2	1673842	1965360	85.17	13.253	We've noted typical ranges for the at
AAGACATA	Sample 1_Drug_Rep 2	2055254	2406407	85.41	13.55	naramotors If your data don't match
AAGATGGC	Empty well	845	5273	16.03	2.568	expectations noted, proceed with cau

Inside the PoolQ Link provided to you by GPP: Counts File

PoolQ Analysis: Example_Screen

Sample

PoolQ Input Files

	Download	Filename	Description
1	.CSV	Example_Screen_Conditions.csv	CSV file mapping sample barcodes to experimental conditions
2	.CSV	CP0041_reference_20160112.csv	CSV file mapping construct barcodes to barcode identifiers
3	<u>.gz</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes
4	<u>.gz</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes

PoolQ Output Files

	Download	Filename	Description	
1	<u>.txt</u>	counts-Example_Screen.txt	PoolQ counts matrix	Counts File
2	<u>.txt</u>	quality-Example_Screen.txt	PoolQ quality report	
3	<u>.txt</u>	lognorm-Example_Screen.txt	Log-normalized counts matrix	
4	<u>.txt</u>	correlation-Example_Screen.txt	Condition scores correlation matrix	
5	<u>.txt</u>	barcodecounts-Example_Screen.txt	Counts by condition barcode	
6	<u>.txt</u>	runinfo-Example_Screen.txt	PoolQ runtime information	
7	<u>.txt</u>	data-integrity-Example_Screen.txt	Janssen discovery data integrity (DDI) document [?]	

FASTQC Reports

	Link	Download	Filename	Description
1	.html	<u>.zip</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes FASTQC analysis
2	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes FASTQC analysis

 \rightarrow Go to the pooled screen analysis page

Nomenclature used in the Counts File

Sample barcode	Screening sample name	Construct barcode ID	Read count
Identifies the well of the 96-well plate. Screening samples are typically spread across many wells	Identifies your screening sample by name	Identifies individual sgRNAs	Reads detected by sequencer for each construct barcode fo each sample name
	Sample1 Drug Pon1	BRDN0000946264	78
(AUI) ITOAACCO	Sampler_Drug_kept	BRDN0000921343	120
		BRDN0000944374	2
		many more	
	Sample1 Drug Ren2	BRDN0000946264	106
	Sampler_Drug_Nepz	BRDN0000921343	62
		BRDN0000944374	7
		many more	
		BRDN0000946264	676
(A03) CCGAGTTA	Sample1_DMSO_Rep1	BRDN0000921343	585
		BRDN0000944374	63
		many more	

Total reads per **sample** should be roughly at least the minimum representation of the screen, ~500 fold more than the library i.e. ~4e7 for a Brunello screen with 77,441 unique guides.

Example Counts File

<u>ruct l</u>	<u>parcode (sgRNA)</u>	<u>Construct ID</u>	Scre	ening sample r	<u>ames</u>	
	A	В	С	D	E	F
1	Construct Barcode	Construct IDs	Sample1_Drug_Rep 1	Sample1_Drug_Rep 2	Sample1_DMSO_Rep 1	Empty Well
2	2 AAAAAAATCCAGCAATGCAG	BRDN0000946264	340	326	282	0
3	AAAAAACCCGTAGATAGCCT	BRDN0000921343	458	434	445	0
4	AAAAAAGAAGAAAAAAACCAG	BRDN0000944374	8	61	46	0
5	AAAAAAGCTCAAGAAGGAGG	BRDN0000892836	58	325	96	0
e	AAAAAAGGCTGTAAAAGCGT	BRDN0000969073	295	214	240	0
7	AAAAAAGGGCTCCAAAAAGG	BRDN0000901979	333	301	466	0
8	AAAAACAACACATCAGAGCG	BRDN0000953921	319	363	148	0
9	AAAAACTCTGGGAAATGACT	BRDN0000951302	301	472	378	0
1	0 AAAAAGACAACCTCGCCCTG	BRDN0000868105	660	504	397	0
1	1 AAAAAGAGCTGTTTGAACAA	BRDN0000920337	758	566	547	0
1	2 AAAAAGATCATGATTGAGCG	BRDN0000888744	433	555	376	0
1	3 AAAAAGCCTGGATAACGGAA	BRDN0000882112	154	115	56	0
1	4 AAAAAGCTGGGTTAGAAGCG	BRDN0000893311	432	456	434	0
1	5 AAAAAGCTTCCGCCTGATGG	BRDN0000736924	954	1066	598	0
1	6 AAAAATCCGGACAATGGTGG	BRDN0000947477	269	475	311	0
1	7 ΑΑΑΑΑΤΟΟΤΑΑΑΑΤΑΑΑΑΤΑ	BRDN0000958591	575	646	358	0
1	8 AAAAATCCTCTGAAGCCGCA	BRDN0000959916	202	274	320	0
1	9 AAAAATGCCAAAAAGCAAGC	BRDN0000970883	396	168	191	0
2	0 AAAAATGCGCAAATTCAGCG	BRDN0000931583	470	163	115	0
2	1 AAAAATGCTGAATTTCCCAG	BRDN0000863920	1023	955	812	0
2	2 AAAAATGGTTGACCTCACCC	BRDN0000916888	273	545	296	0
2	3 AAAAATGTATACTAACCAGG	BRDN0000932094	396	480	180	0
2	4 AAAAATTGAGAGTAACACAG	BRDN0000877631	302	303	202	0
2	5 AAAACAATCTCACCTCTGGG	BRDN0000945838	180	153	122	0

Read counts

Inside the PoolQ Link provided to you by GPP: Lognorm File

PoolQ Analysis: Example_Screen

Sample └─→ Example_Screen Clone Pool └─→ CP0041 Run Date └─→ 2020-10-08 17:30

PoolQ Input Files

	Download	Filename	Description
1	.CSV	Example_Screen_Conditions.csv	CSV file mapping sample barcodes to experimental conditions
2	.CSV	CP0041_reference_20160112.csv	CSV file mapping construct barcodes to barcode identifiers
3	<u>.gz</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes
4	.gz	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes

PoolQ Output Files

	Download	Filename	Description	
1	<u>.txt</u>	counts-Example_Screen.txt	PoolQ counts matrix	
2	<u>.txt</u>	quality-Example_Screen.txt	PoolQ quality report	
3	<u>.txt</u>	lognorm-Example_Screen.txt	Log-normalized counts matrix	l ognorm
4	<u>.txt</u>	correlation-Example_Screen.txt	Condition scores correlation matrix	2081101111
5	<u>.txt</u>	barcodecounts-Example_Screen.txt	Counts by condition barcode	
6	<u>.txt</u>	runinfo-Example_Screen.txt	PoolQ runtime information	
7	<u>.txt</u>	data-integrity-Example_Screen.txt	Janssen discovery data integrity (DDI) document [?]	

FASTQC Reports

	Link	Download	Filename	Description
1	.html	<u>.zip</u>	CEA2GANXX.1.1.fastq.gz	Sequencing data file containing construct barcodes FASTQC analysis
2	<u>.html</u>	<u>.zip</u>	CEA2GANXX.1.barcode_1.fastq.gz	Sequencing data file containing sample barcodes FASTQC analysis

 \rightarrow Go to the pooled screen analysis page

What values are in a Lognorm file?

**If your samples span multiple PCR plates, DO NOT use the provided Lognorm files (these are per plate). Instead, calculate Lognorms on your own using the above formula AFTER summing total reads for each construct barcode across plates using the Counts File Calculating Log Fold-Changes (your "hit" score)

Log Fold-Changelog2RPM of yourlog2RPM of your(LFC)experimental samplereference sample

Discussion point: What is your *reference* sample? Is it an early time point? pDNA as a stand-in for an early time point? A late time point of a sample not treated with drug? These are all examples of possible reference samples that could be used here.

Note that a simple Log Fold-Change calculation is only a first-pass of analyzing the data, and more sophisticated methods maybe called for to determine a 'final' hit-list.

Graphs you should look at to determine the quality of your data

Understanding replicate correlation graphs of Log Fold-Changes

Check all replicates against each other; if one replicate consistently looks bad consider dropping it from analysis.

Pictures modified from:

The effects of drug concentration and length of screen on signal for drug resistance, focusing on positive-selection outcomes

Drug concentration and length of screen are quite important for the strength of your hits. You want to have used enough drug and for the screen to have progressed for enough time.

If you collected pellets at multiple timepoints, and you sequenced too early (not enough signal) or too late (too much noise), you can sequence the other timepoints and see if you did better.

Meghan Wyatt, Amy Goodale, Yenarae Lee, Ting Wu, Sasha Pantel, David Root, Cory Johannessen, Federica Piccioni

Rep A log₂FoldChange

Analyze sample Log Fold-Changes relative to your reference representation

Sample Log-Fold-Change

Reference Log2-normalized-reads-per-million

Reference Log2-normalized-reads-per-million

Buildup along a straight line in this way indicates that some guides don't have enough representation to measure negative-selection.

This is evidence of a bottleneck in your screen. Some positive-selection hits may still be detected.

Calling your hits: basic guidelines

How to call hits is a quite important and complicated question, which we can't fully answer. Here we will provide some guidance and rules of thumb, specifically for CRISPR pooled-screening of commonly used libraries.

From Guides to Genes for CRISPR screens

We recommend generating a volcano plot as a first-pass:

https://portals.broadinstitute.org/gpp/public/analysis-tools/crispr-gene-scoring

This will generate volcano plots and gene-level-scores using the CHIP file and Log Fold-Changes values, provided in .txt file form. There are many other ways to analyze screens, and multiple methods can be compared to ensure that results are robust to the exact analytic approach.

See: Doench JG, Hanna RE, *Nat Biotechnol*, 2020 Jul;38(7):813-823 for discussion of other available tools

Volcano plots of *p*-values vs. Log-Fold-Change by gene: What do we consider great, ok, and less-than-great hit values for some standard libraries?

For a standard Brunello or Avana 4 guides per gene CRISPR knock-out screen:

Anything above 4 is likely to validate

Anything above 3 is potentially worth follow-up

Anything below 3 should be viewed with skepticism The hypergeometric tool on our website calculates *p*-values based on the consistency of ranks of guides targeting the same gene.

For screens without multiple guides (like ORF screens), the reported value is not applicable and Log Fold-Change alone might be the better way of determining a hit cutoff.

Determining a hit cutoff based on Log Fold-Change values alone is best done with proper use of control constructs, to establish an empirical null.

What are the Log Fold-Changes of your negative and positive controls?

For a standard CRISPR knock-out screen:

Non-targeting (NO_SITE) and One-intergenic-site (ONE_SITE) control guides can give an indication of screen noise. These should be much lower Log Fold-Change and *p*-value than your hits.

Note: it is not uncommon that for certain cell lines non-targeting controls have a relative growth advantage over one-intergenic site controls due, most likely, to increased sensitivity to double-strand breaks.

What are the Log Fold-Changes of your negative and positive controls? For a standard CRISPR knock-out, negative-selection screen

The gold-standard set of common essential gene is from: Hart T et al Cell 2015;163:1515–1526 and Hart T et al Mol. Syst. Biol. 2014;10:733 (this list is also available at https://github.com/mhegde under auc-calculation)

What are the Log Fold-Changes of your negative and positive controls? For a standard CRISPR knock-out, negative-selection screen

Interpretation of common essentials and common non-essentials allows your screen to be compared quantitatively to other screens

The dAUC can be calculated as described in Sanson KR et al. Nat Commun, 2018 Dec 21;9(1):5416

For reference and more in depth discussion see literature published from the GPP regarding general pooled-screening design and analysis:

Piccioni F, Younger ST, Root DE, Curr Protoc Mol Biol, 2018 Jan 16;121:32.1.1-32.1.21

Doench JG, *Nat Rev Genet*, 2018 Feb;19(2):67-80

Doench JG, Hanna RE, Nat Biotechnol, 2020 Jul;38(7):813-823

For further aid with analysis for your specific project please contact your screening scientist.