
	
	
Last	modified:	December	2019	
Last	reviewed:	December	2019	
	

Pooled	Screening	Deconvolution	Using	PoolQ3	
	
Introduction	
Definitions	
Prerequisites	

Construct	Reads	File	
Barcode	Reads	File	
Reference	File	
Conditions	File	
Platform	Reference	File	
Barcode	Policy	

Fixed	Barcode	Policy	
Prefix	Barcode	Policy	
Template	Barcode	Policy	

Example	Data	
Running	PoolQ	
PoolQ	Output	Files	

Counts	File	
Normalized	Counts	File	
The	Unexpected	Sequence	File	
Quality	File	
The	Correlation	File	

FAQ	
	
	

Introduction	
	

In	pooled	screens,	a	population	of	cells	is	infected	with	a	lentiviral	pool	containing	a	mixture	of	
constructs	with	the	objective	of	integrating	one	perturbagen	per	cell,	then	separated	into	test	
and	control	populations.	At	the	conclusion	of	the	screen,	test	and	control	cell	populations	are	
harvested,	genomic	DNA	is	purified,	and	the	integrated	perturbagens	containing	a	short	DNA	
sequence	(barcode)	are	amplified	by	PCR.	Sequencing	then	determines	the	abundance	of	each	
perturbagen	in	each	sample.	To	maximize	utilization	of	sequencing	lanes	and	reduce	cost,	
multiple	samples	can	be	sequenced	simultaneously.	PoolQ	deconvolutes	these	sequencing	files	
and	quantitates	perturbagen	barcodes	in	each	sample.	There	are	now	two	versions	of	the	PoolQ	
software:	PoolQ2	and	PoolQ3.	This	document	covers	PoolQ3.	

	



Definitions	
• construct	barcode:	DNA	barcode	sequence	identifying	the	sgRNA,	shRNA	or	ORF	

perturbagen	within	the	DNA	sequences	
• construct	ID:	every	sgRNA,	shRNA	or	ORF	has	been	given	an	ID	(Example:	ID	

BRDN0000561048	currently	corresponds	to	a	sgRNA	for	NF1	gene).		
• sample	barcode:	sequence	in	the	P7	primer	that	gets	incorporated	in	the	PCR	product.	

Given	that	a	different	P7	primer	has	been	aliquoted	in	each	well	of	a	PCR	plate,	during	
deconvolution	that	sample	barcode	will	be	associated	with	every	construct	from	the	
same	sample	

• stagger:	regions	of	varying	length	in	the	P5	primers,	inserted	to	prevent	mono-template	
reads	of	the	vector	

• fuzzy	matching:	a	method	that	attempts	to	find	a	likely	approximate	match	when	an	
exact	match	is	not	found;	allows	1	base	mismatch,	but	does	not	consider	indels	

• search	prefix:	Short	DNA	sequence	that	should	precede	all	the	construct	barcodes	in	
the	reads	file.	

	
The	PoolQ	software	supports	a	wide	variety	of	screening	and	sequencing	possibilities.	This	
protocol	describes	the	use	of	PoolQ	for	deconvolution	and	quantitation	in	the	most	common	
scenario.	In	this	case,	PCR	amplification	has	introduced	a	variable-length	DNA	sequence	via	a	
P5	primer	that	will	occur	at	the	beginning	of	each	read.		
	
The	sequencing	machines	split	reads	into	two	components,	which	are	written	to	separate	
FASTQ	files.	One	file	contains	the	stagger	followed	by	a	portion	of	the	vector,	followed	by	the	
construct	barcode.	This	file	is	called	the	construct	reads	file.	The	other	file	contains	the	sample	
barcode	only	and	is	called	the	sample	reads	file.	
	

	
	

The	inclusion	of	the	variable	length	stagger	region	means	that	the	construct	barcode	location	
varies	from	read	to	read.	In	order	to	find	the	construct	barcode	within	a	read,	PoolQ	makes	use	
of	the	small	portion	of	vector	that	exists	between	the	stagger	and	the	construct	barcode.	As	
long	as	all	constructs	in	the	sequencing	lane	use	a	similar	vector,	the	construct	barcodes	may	be	
found	by	locating	the	short	DNA	sequence	from	the	vector	that	immediately	precedes	each	
construct	barcode.	We	call	this	sequence	the	construct	search	prefix.	Vectors	may	vary	widely,	
but	as	long	as	the	few	bases	before	the	construct	barcode	are	the	same,	they	can	be	pooled	and	
deconvoluted	together.	

P5 primer

stagger vector vector

P7 
(sample BC)

P7 primer

P5 construct BC
(sgRNA, shRNA, ORF)

construct reads file

construct ID

reference file

barcode reads file

conditions

conditions file



Prerequisites	
Running	PoolQ	for	this	scenario	requires	the	following	input	files:	

• Construct	reads	file	
• Barcode	reads	file	
• Reference	file	
• Conditions	file	
• Platform	reference	file	(optional)	

	
You	will	also	need	to	know	the	following	information:	

• Construct	barcode	search	prefix	
• Sample	barcode	start	index	(usually	0)	

	
In	addition,	you	will	need	a	Java	Runtime	Environment	(JRE)	for	Java	8	or	later.	

Ø Construct	Reads	File	
The	construct	reads	file	(.fastq,	.txt)	contain	the	sequencing	reads	including	the	construct	
barcodes.	PoolQ	calls	this	the	row	reads	file	since	the	construct	barcodes	become	the	rows	in	
the	counts	file.	

Ø Barcode	Reads	File	
The	barcode	file	(.fastq)	contains	the	sample	barcode	reads.	PoolQ	calls	this	the	column	reads	
file,	since	the	sample	names	are	used	to	form	the	columns	in	the	scores	file.	

Ø Reference	File	
The	reference	file	matches	construct	barcode	to	construct	ID.	PoolQ	calls	this	the	row-reference	
file	since	it	contains	the	barcodes	that	will	make	up	the	rows	of	the	counts	file.	

• Comma-separated	(.csv)	or	tab-separated	(.tsv	or	.txt)	
• Use	proper	quoting	if	fields	contain	delimiters	(commas	or	tabs)	
• No	column	headers	
• Column	1:	construct	barcode	
• Column	2:	construct	ID	
• Extra	columns	are	allowed	but	ignored	
• Every	construct	barcode	must	have	the	same	length	and	must	contain	only	A,	T,	C	or	G	
• A	construct	ID	cannot	occur	more	than	once	in	the	file	

Ø Conditions	File		
Each	P7	primer	corresponds	to	a	particular	PCR	well.	Therefore,	the	conditions	file	has	a	
column	with	the	sample	barcode,	and	a	column	with	the	conditions	description.	PoolQ	calls	this	
the	column	reference	file,	since	it	contains	the	conditions	that	form	the	columns	of	the	counts	
file.	

• Comma-separated	(.csv)	or	tab-separated	(.tsv	or	.txt)	
• Use	proper	quoting	if	fields	contain	delimiters	(commas	or	tabs)		
• No	column	headers		



• Column	1:	sample	barcode	
• Column	2:	sample	ID	or	condition	
• Every	barcode	must	have	the	same	length	and	must	contain	only	A,	T,	C	or	G	
• A	sample	barcode	cannot	occur	more	than	once	in	the	file		
• Multiple	sample	barcodes	may	map	to	the	same	condition.	For	example,	the	same	cell	

pellet	may	have	been	amplified	across	multiple	PCR	wells	

Ø Platform	Reference	File	
Optional	input	file	containing	master	list	of	known	constructs	sequences	and	their	constructs	
IDs,	provides	constructs	IDs	for	barcodes	encountered	during	the	PoolQ	run	that	were	not	
expected	to	occur.	

Ø Barcode	Policy	
PoolQ	uses	barcode	policies	to	locate	sample	and	construct	barcodes	within	the	reads.	It	
currently	supports	three	varieties	of	barcode	policies:	fixed,	prefix,	and	template.	In	this	
protocol,	we	describe	a	scenario	that	uses	a	fixed	policy	to	locate	sample	barcodes	and	a	prefix	
policy	to	locate	a	construct	barcode.	These	are	passed	to	PoolQ	using	the	arguments	--col-
barcode-policy	and	--row-barcode-policy,	respectively.	

Fixed	Barcode	Policy	
A	fixed	barcode	policy	indicates	to	PoolQ	that	barcodes	occur	at	a	fixed,	known	location	within	
reads.	Fixed	barcode	policies	are	often	used	for	the	sample	barcodes.	A	fixed	barcode	policy	
starting	at	zero-based	index	N	is	written	FIXED:N,	so	to	locate	barcodes	at	the	very	beginning	
(index	0),	provide	FIXED:0.	

Prefix	Barcode	Policy	
The	prefix	barcode	policy	indicates	that	a	short	DNA	sequence	from	the	vector	that	
immediately	precedes	the	construct	barcodes.	The	following	table	describes	the	standard	
search	prefix	for	most	Broad	constructs:	
	

Construct	Type	 Search	Prefix	

sgRNA	 CACCG	

shRNA	 ACCGG	

ORF	 GACGA	

	
Prefix	search	may	optionally	be	limited	to	certain	regions	within	the	read;	to	express	this,	
provide	the	zero-based	index	of	the	first	and/or	last	base	in	the	read	where	the	prefix	may	be	
found.	Here	are	some	examples:	

• PREFIX:CACCG	-	searches	the	whole	read	for	a	CACCG	prefix	
• PREFIX:ACCGG@18	-	searches	the	read	starting	at	the	19th	base	for	an	ACCGG	prefix	
• PREFIX:GACGA@-49	-	searches	the	read	up	to	the	50th	base	for	a	GACGA	prefix	
• PREFIX:CACCG@18-49	-	searches	the	19th	through	50th	base	for	a	CACCG	prefix	



Example	Data	
The	PoolQ	distribution	includes	sample	data	files	for	a	number	of	common	scenarios.	The	data	
for	this	scenario	is	in	test-data/scenario4.	Here	is	the	first	FASTQ	record	from	the	file	
scenario4.barcode_1.fastq,	which	contains	the	sample	barcodes:	
	
@HWUSI-EAS100R:6:23:398:3989#1	
AACTCACG	
+	
4<<8-767	
	
Here	are	two	example	FASTQ	records	from	scenario4.1.fastq,	which	contains	construct	
barcodes:	
	
@HWUSI-EAS100R:6:23:398:3989#1	
ATTACATATTAATGGGACAGGCGGCCACCGCCATAATACTAGGTGACAGA	
+	
2059-@0/7798;98:3<7;02=7356A.34;:965D1798=:<75<E55	
@HWUSI-EAS100R:6:23:398:3989#2	
CTCATTAATGGGACAGGCGGCCACCGCCTCCGTTCTGATACTCACAATTA	
+	
:3<,=;:;@8,2?865?79<<:=::8;:77?6;780(5252;3B139545	
	
First,	notice	that	the	first	line	of	the	sample	barcode	FASTQ	record	and	the	first	line	of	the	first	
construct	barcode	FASTQ	record	are	identical.	The	read	IDs	are	used	to	coordinate	reads	
between	the	two	files.	The	sample	barcode	(highlighted	green)	is	an	8mer.	The	search	prefix	
CACCG	is	highlighted	in	orange.	The	construct	barcodes	(highlighted	blue)	are	20-mers.	The	
variable-length	“stagger”	region	located	at	the	beginning	of	the	construct	barcode	reads	is	
highlighted	in	red.	

Running	PoolQ	
The	PoolQ	distribution	contains	sample	input	files	in	the	test-data	directory.	If	you	have	GNU	
Make	installed,	you	can	test	this	scenario	by	running:	
	

%	make	test-scenario-4	
	
This	will	print	the	full	command	line,	run	PoolQ	on	the	appropriate	input	files,	and	verify	that	
the	scores	match	a	known	scores	file.	
	
We	run	PoolQ	using	the	following	command	line:	
	

poolq3.sh	\	
				--compat	\	
				--col-reference	Conditions.csv	\	
				--row-reference	Reference.csv	\	
				--row-reads	scenario4.1.fastq	\	



				--col-reads	scenario4.barcode_1.fastq	\	
				--row-barcode-policy	PREFIX:CACCG@18	\	
				--col-barcode-policy	FIXED:0	

PoolQ	Output	Files	

Ø Counts	File	
The	counts	file	is	a	text	file	that	contains	a	simple	matrix	of	the	read	counts.	The	columns	
represent	the	experimental	conditions,	and	the	rows	correspond	the	construct	barcode	
sequences.	The	individual	values	in	each	row	are	separated	by	tabs.	If	you	plan	on	loading	the	
scores	file	into	a	spreadsheet	application	such	as	Excel,	then	we	recommend	using	a	file	
extension	such	as	.txt,	that	your	spreadsheet	application	will	recognize	as	being	a	text	file.	
When	opening	the	file	in	Excel,	you	will	probably	be	prompted	with	a	dialog	asking	you	to	
describe	the	structure	of	the	file.	In	the	section	about	separator	options,	be	sure	that	the	check	
box	for	"Tab"	is	selected.	

Ø Normalized	Counts	File	
The	normalized	counts	file	contains	a	log-normalized	view	of	the	counts	file.	The	format	of	the	
file	is	the	same,	but	the	counts	are	normalized	by	the	following	formula:	

1. Take	the	raw	read	count	for	the	construct	ID	and	the	condition	
2. Divide	by	the	total	number	of	reads	for	that	condition	that	matched	a	construct	barcode	

found	in	a	reference	file	
3. Multiply	by	a	constant	factor	of	1	million	
4. Add	one	
5. Take	the	log	(base	2)	

Ø The	Unexpected	Sequence	File	
The	unexpected	sequence	file	contains	a	report	that	describes	briefly	the	collection	of	
sequences	found	in	the	position	where	a	construct	barcode	was	expected	during	the	run.		

Ø Quality	File	
In	addition	to	the	scores	file,	PoolQ	writes	a	quality	file	containing	a	variety	of	useful	metrics	to	
help	users	understand	the	quality	of	their	sequencing	data.	

Ø The	Correlation	File	
The	correlation	file	contains	a	pairwise	correlation	matrix	comparing	the	log-normalized	per-
construct	counts	for	each	experimental	condition.	The	correlation	metric	is	the	Pearson	
product-moment	correlation.	

	



FAQ	
Q:	Does	PoolQ	handle	paired-end	sequencing?	
A:	No.	As	of	now,	there	are	no	screen	deconvolution	scenarios	that	require	paired-end	reads.	
	
Q:	Does	PoolQ	support	variable-length	sample	barcodes?	
A:	No,	all	sample	barcodes	must	be	of	the	same	length.	
	
Q:	Do	we	support	variable-length	construct	barcodes?	
A:	Not	directly.	If	construct	barcodes	vary	in	length,	the	best	case	solution	is	to	“pad”	the	
shorter	construct	barcodes	with	bases	from	the	vector	backbone	to	achieve	a	reference	file	
where	all	construct	barcodes	are	the	same	length.	
	
Q:	How	does	PoolQ	handle	ambiguous	matches?	
A:	Exact	matches	always	take	precedence	over	fuzzy	matches.	Even	when	configured	to	
support	fuzzy	matches,	while	processing	a	read,	if	PoolQ	finds	an	exact	match	it	will	tally	the	
match	and	continue	with	the	next	read.	It	will	begin	considering	fuzzy	matches	only	if	no	exact	
match	is	found.	If	multiple	construct	barcodes	in	the	reference	file	are	1-base	mismatches	to	
the	construct	barcode	found	in	the	sequencing	data,	PoolQ	has	two	modes	of	conflict	resolution.	
In	the	strictest	mode	(the	default),	it	simply	throws	out	the	read.	Alternately,	PoolQ	can	be	
configured	to	count	the	read	as	matching	to	all	possible	1-base	mismatches.	
	
Q:	Should	I	use	fuzzy	matching?	
A:	Fuzzy	matching	maximizes	PoolQ’s	ability	to	extract	construct	barcodes	from	the	sequencing	
data.	However,	it	also	comes	at	a	performance	penalty.	It	is	sometimes	helpful	at	the	start	of	an	
experiment	to	run	data	through	with	fuzzy	matching	turned	off,	as	a	check	of	the	data.	
However,	once	the	experimental	set-up	has	been	verified,	under	most	circumstances,	the	best	
results	will	come	from	fuzzy	matching.	
	
Q:	Does	fuzzy	matching	support	indels?	
A:	No,	only	1-base	substitutions	or	Ns	
	
	


